用反證法證明“三角形的三個(gè)內(nèi)角中,至少有一個(gè)內(nèi)角小于或等于60°”

證明:假設(shè)所求證的結(jié)論不成立,即

∠A       60°,∠B      60°,∠C      60°,

      則∠A+∠B+∠C >           。

     這與                                            相矛盾。

     ∴                 不成立。

     ∴                               。

 

【答案】

>  >  >  180°  內(nèi)角和為180°,假設(shè),  求證的命題正確

【解析】用反證法證明問(wèn)題,先假設(shè)結(jié)論不成立,可得∠A+∠B+∠C >180°根據(jù)三角形的內(nèi)角和為180°,與已知相矛盾,從而證得

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

16、用反證法證明“三角形三個(gè)內(nèi)角中至少有兩個(gè)銳角”時(shí)應(yīng)首先假設(shè)
三角形三個(gè)內(nèi)角中最多有一個(gè)銳角

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

16、用反證法證明“三角形的三個(gè)內(nèi)角中,至少有一個(gè)大于或等于60°”時(shí),應(yīng)先假設(shè)
三角形的三個(gè)內(nèi)角都小于60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、用反證法證明三角形中至少有一個(gè)角不小于60°,第一步應(yīng)假設(shè)
三角形的三個(gè)內(nèi)角都小于60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用反證法證明“三角形三個(gè)內(nèi)角中,至少有一個(gè)內(nèi)角小于或等于60°”.
已知:∠A,∠B,∠C是△ABC的內(nèi)角.求證:∠A,∠B,∠C中至少有一個(gè)內(nèi)角小于或等于60°.
證明:假設(shè)求證的結(jié)論不成立,那么
三角形中所有角都大于60°
三角形中所有角都大于60°

∴∠A+∠B+∠C>
180°
180°

這與三角形
的三內(nèi)角和為180°
的三內(nèi)角和為180°
相矛盾.
∴假設(shè)不成立
三角形三內(nèi)角中至少有一個(gè)內(nèi)角小于或等于60度
三角形三內(nèi)角中至少有一個(gè)內(nèi)角小于或等于60度

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用反證法證明“三角形中必有一個(gè)角不大于60°”,先假設(shè)這個(gè)三角形中( 。
A、有一個(gè)內(nèi)角大于60°B、每一個(gè)內(nèi)角都大于60°C、有一個(gè)內(nèi)角小于60°D、至少有一個(gè)內(nèi)角不大于60°

查看答案和解析>>

同步練習(xí)冊(cè)答案