分析 由DC=DE,想到構(gòu)造全等三角形,故作DN⊥AC于N,EH⊥BC垂足為H,ND與EH交于點M,只要證明△CDN≌△DEM得DN=EM,CN=DM,設(shè)DF=a,求出相應(yīng)的線段,列出關(guān)于a的方程即可.
解答 解;如圖作DN⊥AC于N,EH⊥BC垂足為H,ND與EH交于點M.設(shè)DF=a.
∵∠DCF=30°,∠CDF=90°,
∴CD=$\sqrt{3}$a,
在RT△CDN中,∵∠DCN=30°,CD=$\sqrt{3}$a,
∴CN=$\frac{\sqrt{3}}{2}a$,ND=$\frac{3}{2}$a,
∵∠CDN+∠EDM=90°,∠NCD+∠CDN=90°,
∴∠NCD=∠EDM,
在△CDN和△DEM中,
$\left\{\begin{array}{l}{∠NCD=∠EDM}\\{∠CND=∠EMD=90°}\\{CD=ED}\end{array}\right.$,
∴△CDN≌△DEM,
∴DM=CN=$\frac{\sqrt{3}}{2}a$,EM=ND=$\frac{3}{2}$a,
∵∠N=∠NCH=∠M=90°,
∴四邊形CNMH是矩形,
∴MH=CN=$\frac{\sqrt{3}}{2}$a,CH=MN$\frac{3}{2}a+\frac{\sqrt{3}}{2}a$,
∵BC=AC,∠ACB=90°,AB=4$\sqrt{3}$
∴∠B=45°,BC=2$\sqrt{6}$,
∴∠HEB=∠B=45°,
∴EH=HB=EM-HM=$\frac{3}{2}a-\frac{\sqrt{3}}{2}a$,
∴$\frac{3}{2}a$+$\frac{\sqrt{3}}{2}a$+$\frac{3}{2}a$-$\frac{\sqrt{3}}{2}$a=2$\sqrt{6}$,
∴a=$\frac{2\sqrt{6}}{3}$.
故答案為$\frac{2\sqrt{6}}{3}$.
點評 本題考查勾股定理、等腰直角三角形的性質(zhì)、全等三角形的判定和性質(zhì)、矩形的性質(zhì)等知識,解題的關(guān)鍵是添加輔助線構(gòu)造全等三角形,屬于中考填空題的壓軸題.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | a3•a3=a9 | B. | (a3)2=a5 | C. | (2ab2)3=6a3b6 | D. | (-a)7÷(-a)2=-a5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | ①②③ | B. | ①③⑤ | C. | ②③④ | D. | ①②④ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com