分析 延長(zhǎng)CA、DB交于點(diǎn)E,則∠C=60°,∠E=30°.在Rt△ABE中,利用含30°角的直角三角形的性質(zhì)求出BE=2AB=8,根據(jù)勾股定理求出AE=4$\sqrt{3}$.同理,在Rt△DEC中求出CE=2CD=8$\sqrt{3}$,DE=$\sqrt{C{E}^{2}-C{D}^{2}}$=12,然后根據(jù)S四邊形ABDC=S△CDE-S△ABE,計(jì)算即可求解.
解答 解:如圖,延長(zhǎng)CA、DB交于點(diǎn)E,
∵四邊形ABDC中,∠ABD=120°,AB⊥AC,BD⊥CD,
∴∠C=60°,
∴∠E=30°.
在Rt△ABE中,∵AB=4,∠E=30°,
∴BE=2AB=8,
∴AE=$\sqrt{B{E}^{2}-A{B}^{2}}$=4$\sqrt{3}$.
在Rt△DEC中,∵∠E=30°,CD=4$\sqrt{3}$,
∴CE=2CD=8$\sqrt{3}$,
∴DE=$\sqrt{C{E}^{2}-C{D}^{2}}$=12,
∴S△ABE=$\frac{1}{2}$×4×4$\sqrt{3}$=8$\sqrt{3}$,
S△CDE=$\frac{1}{2}$×4$\sqrt{3}$×12=24$\sqrt{3}$,
∴S四邊形ABDC=S△CDE-S△ABE=16$\sqrt{3}$.
故答案為16$\sqrt{3}$.
點(diǎn)評(píng) 本題考查了勾股定理,含30°角的直角三角形的性質(zhì),圖形的面積,準(zhǔn)確作出輔助線構(gòu)造直角三角形是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 65° | B. | 60° | C. | 45° | D. | 70° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com