如圖,在平面直角坐標(biāo)系xOy中,直線l1⊥x軸于點(diǎn)(1,0),直線l2⊥x軸于點(diǎn)(2,0),直線l3⊥x軸于點(diǎn)(3,0)…直線ln⊥x軸于點(diǎn)(n,0).函數(shù)y=x的圖象與直線l1,l2,l3,…ln分別交于點(diǎn)A1,A2,A3,…An,函數(shù)y=2x的圖象與直線l1,l2,l3,…ln分別交于點(diǎn)B1,B2,B3,…Bn.如果△OA1B1的面積記為S1,四邊形A1A2B2B1的面積記作S2,四邊形A2A3B3B2的面積記作S3,…四邊形An-1AnBnBn-1的面積記作Sn,那么S2011=   
【答案】分析:先求出A1,A2,A3,…An和點(diǎn)B1,B2,B3,…Bn的坐標(biāo),利用三角形的面積公式計(jì)算△OA1B1的面積;四邊形A1A2B2B1的面積,四邊形A2A3B3B2的面積,…四邊形An-1AnBnBn-1的面積,則通過兩個(gè)三角形的面積差計(jì)算,這樣得到Sn=n-,然后把n=2011代入即可.
解答:解:∵函數(shù)y=x的圖象與直線l1,l2,l3,…ln分別交于點(diǎn)A1,A2,A3,…An
∴A1(1,1),A2(2,2),A3(3,3)…An(n,n),
又∵函數(shù)y=2x的圖象與直線l1,l2,l3,…ln分別交于點(diǎn)B1,B2,B3,…Bn,
∴B1(1,2),B2(2,4),B3(3,6),…Bn(n,2n),
∴S1=•1•(2-1),
S2=•2•(4-2)-•1•(2-1),
S3=•3•(6-3)-•2•(4-2),

Sn=•n•(2n-n)-•(n-1)[2(n-1)-(n-1)]
=n2-(n-1)2
=n-
當(dāng)n=2011,S2011=2011-=2010.5.
故答案為2010.5.
點(diǎn)評:本題考查了兩條直線交點(diǎn)坐標(biāo)的求法:利用兩個(gè)圖象的解析式建立方程組,解方程組即可;也考查了三角形的面積公式以及梯形的面積公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動,路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案