如圖,正方形ABCO的邊長(zhǎng)為,以O(shè)為原點(diǎn)建立平面直角坐標(biāo)系,點(diǎn)A在x軸的負(fù)半軸上,點(diǎn)C在y軸的正半軸上,把正方形ABCO繞點(diǎn)O順時(shí)針旋轉(zhuǎn)α后得到正方形A1B1C1O(α<45°),B1C1交y軸于點(diǎn)D,且D為B1C1的中點(diǎn),拋物線y=ax2+bx+c過點(diǎn)A1、B1、C1
(1)求tanα的值;
(2)求點(diǎn)A1的坐標(biāo),并直接寫出點(diǎn)B1、點(diǎn)C1的坐標(biāo);
(3)求拋物線的函數(shù)表達(dá)式及其對(duì)稱軸;
(4)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△PB1C1為直角三角形?若存在,直接寫出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】分析:(1)根據(jù)旋轉(zhuǎn)的知識(shí)可知:四邊形A1B1C1O為正方形,∴OC1=B1C1,∠OC1B1=90°,∠C1OD=∠AOA1=α,又∵D是B1C1的中點(diǎn),∴,∴在Rt△C1OD中,tanα=.∴tanα的值是
(2)根據(jù)三角函數(shù)與勾股定理即可求得點(diǎn)A1的坐標(biāo),并直接寫出點(diǎn)B1、點(diǎn)C1的坐標(biāo);要注意方程思想的應(yīng)用;
(3)將點(diǎn)A1,B1,C1的坐標(biāo)代入解析式,利用方程組即可求得解析式,再求得對(duì)稱軸;
(4)一種是與線段B1C1垂直的直線:分別過點(diǎn)B1、C1;一種是根據(jù)直徑所對(duì)的圓周角是直角求得,以線段B1C1為直徑作圓,與對(duì)稱軸的交點(diǎn)即是所求點(diǎn).
解答:解:(1)∵四邊形A1B1C1O為正方形,
∴OC1=B1C1,∠OC1B1=90度.
又∵D是B1C1的中點(diǎn),

∵由旋轉(zhuǎn)性質(zhì)可知,∠C1OD=∠AOA1=α,
∴在Rt△C1OD中,tanα=
∴tanα的值是.(2分)

(2)過點(diǎn)A1作A1E⊥x軸,垂足為點(diǎn)E.
在Rt△A1EO中,tanα=

設(shè)A1E=k,則OE=2k,在Rt△A1EO中,,
根據(jù)勾股定理,得A1E2+OE2=OA12
,
解得k1=-1(舍),k2=1.
∴A1E=1,OE=2.
又∵點(diǎn)A1在第二象限,
∴點(diǎn)A1的坐標(biāo)為(-2,1).(4分)
直接寫出點(diǎn)B1的坐標(biāo)為(-1,3),點(diǎn)C1的坐標(biāo)為(1,2).(6分)

(3)∵拋物線y=ax2+bx+c過點(diǎn)A1,B1,C1

解得
∴拋物線的函數(shù)表達(dá)式為.(8分)
將其配方,得
∴拋物線的對(duì)稱軸是直線.(9分)

(4)存在點(diǎn)P,使△PB1C1為直角三角形.(10分)
滿足條件的點(diǎn)P共有4個(gè):,,.(14分)
點(diǎn)評(píng):此題屬于中考中的壓軸題,難度較大,知識(shí)點(diǎn)考查的較多而且聯(lián)系密切,需要學(xué)生認(rèn)真審題.此題考查了二次函數(shù)與一次函數(shù),三角形、四邊形的綜合知識(shí),解題的關(guān)鍵是要注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCO放在平面直角坐標(biāo)系中,其中點(diǎn)O為坐標(biāo)原點(diǎn),A、C兩點(diǎn)分別在x軸的負(fù)半軸和y軸的正半軸上,點(diǎn)B的坐標(biāo)為(-4,4).已知點(diǎn)E、點(diǎn)F分別從A、點(diǎn)B同時(shí)出發(fā),點(diǎn)E以每秒2個(gè)單位長(zhǎng)度的速度在線段AB上來回運(yùn)動(dòng).點(diǎn)F沿B→C→0方向,以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)O運(yùn)動(dòng),當(dāng)點(diǎn)F到達(dá)點(diǎn)O時(shí),E、F兩點(diǎn)都停止運(yùn)動(dòng).在E、F的運(yùn)動(dòng)過程中,存在某個(gè)時(shí)刻,使得△OEF的面積為6.那么點(diǎn)E的坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCO的邊長(zhǎng)為4,D為AB上一點(diǎn),且BD=3,以點(diǎn)C為中心,把△CBD順時(shí)針旋轉(zhuǎn)90°,得到△CB1D1
(1)直接寫出點(diǎn)D1的坐標(biāo);
(2)求點(diǎn)D旋轉(zhuǎn)到點(diǎn)D1所經(jīng)過的路線長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCO的邊長(zhǎng)是2,E是BC中點(diǎn),則E點(diǎn)的坐標(biāo)是
 
,直線AE的解析式是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCO的邊長(zhǎng)為
5
,以O(shè)為原點(diǎn)建立平面直角坐標(biāo)系,點(diǎn)A在x軸的負(fù)半軸上,點(diǎn)C在y軸的正半軸上,把正方形ABCO繞點(diǎn)O順時(shí)針旋轉(zhuǎn)α后得到正方形A1B1C1O(α<45°),精英家教網(wǎng)B1C1交y軸于點(diǎn)D,且D為B1C1的中點(diǎn),拋物線y=ax2+bx+c過點(diǎn)A1、B1、C1
(1)求tanα的值;
(2)求點(diǎn)A1的坐標(biāo),并直接寫出點(diǎn)B1、點(diǎn)C1的坐標(biāo);
(3)求拋物線的函數(shù)表達(dá)式及其對(duì)稱軸;
(4)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△PB1C1為直角三角形?若存在,直接寫出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCO的邊長(zhǎng)為
5
,O為原點(diǎn),BC交y軸于點(diǎn)D,且D為BC邊的中點(diǎn),拋物線y=a精英家教網(wǎng)x2+bx+c經(jīng)過B、C且與y軸的交點(diǎn)為E(0,
10
3
)

(1)求點(diǎn)C的坐標(biāo),并直接寫出點(diǎn)A、B的坐標(biāo);
(2)求拋物線的解析式及對(duì)稱軸;
(3)探索在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△PBC為直角三角形?若存在,直接寫出所有滿足條件的P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案