2.如圖,是一圓錐的左視圖,根據(jù)圖中所標(biāo)數(shù)據(jù),圓錐側(cè)面展開圖的扇形圓心角的大小為( 。
A.90°B.120°C.135°D.150°

分析 根據(jù)圓錐的底面半徑得到圓錐的底面周長,也就是圓錐的側(cè)面展開圖的弧長,根據(jù)勾股定理得到圓錐的母線長,利用弧長公式可求得圓錐的側(cè)面展開圖中扇形的圓心角.

解答 解:∵圓錐的底面半徑為3,
∴圓錐的底面周長為6π,
∵圓錐的高是6$\sqrt{2}$,
∴圓錐的母線長為$\sqrt{{3}^{2}+(6\sqrt{2})^{2}}$=9,
設(shè)扇形的圓心角為n°,
∴$\frac{nπ×9}{180}$=6π,
解得n=120.
答:圓錐的側(cè)面展開圖中扇形的圓心角為120°.
故選B.

點(diǎn)評 本題考查了圓錐的計算,圓錐的側(cè)面展開圖是一個扇形,此扇形的弧長等于圓錐底面周長,扇形的半徑等于圓錐的母線長.本題就是把的扇形的弧長等于圓錐底面周長作為相等關(guān)系,列方程求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.如圖1,在△ABC中,∠ACB=90°,AC=BC=2,D為AC中點(diǎn),以點(diǎn)A為直角頂點(diǎn)作△DEF,使E點(diǎn)與A點(diǎn)重合,∠FED=90°,EF=BC,DF與AB交于點(diǎn)點(diǎn)G.
(1)求AG:BG的值;
(2)如圖2,將△EFG沿射線AC方向向右平移至點(diǎn)E與點(diǎn)C重合時停止,設(shè)平移的距離為x,△ABC與△DEF重合部分的面積為y,請求出y與x的函數(shù)關(guān)系式;
(3)如圖3,當(dāng)平移停止時,將△DEF繞點(diǎn)E順時針旋轉(zhuǎn)一周,在旋轉(zhuǎn)過程中△ACF與△BCF能否全等?若能,請直接寫出旋轉(zhuǎn)的角度α;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,點(diǎn)D在等邊△ABC內(nèi),將△ABC繞點(diǎn)C順時針旋轉(zhuǎn)60°,得到△ACE,連接BE、DE,若∠AEB=45°,則∠DBE的度數(shù)為(  )
A.15°B.20°C.25°D.30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.如圖1,在平面直角坐標(biāo)系中,拋物線y=-$\frac{1}{3}$x2+$\frac{2\sqrt{3}}{3}$x+3與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,拋物線的頂點(diǎn)為點(diǎn)E.
(1)判斷△ABC的形狀,并說明理由;
(2)經(jīng)過B,C兩點(diǎn)的直線交拋物線的對稱軸于點(diǎn)D,點(diǎn)P為直線BC上方拋物線上的一動點(diǎn),當(dāng)△PCD的面積最大時,Q從點(diǎn)P出發(fā),先沿適當(dāng)?shù)穆窂竭\(yùn)動到拋物線的對稱軸上點(diǎn)M處,再沿垂直于拋物線對稱軸的方向運(yùn)動到y(tǒng)軸上的點(diǎn)N處,最后沿適當(dāng)?shù)穆窂竭\(yùn)動到點(diǎn)A處停止.當(dāng)點(diǎn)Q的運(yùn)動路徑最短時,求點(diǎn)N的坐標(biāo)及點(diǎn)Q經(jīng)過的最短路徑的長;
(3)如圖2,平移拋物線,使拋物線的頂點(diǎn)E在射線AE上移動,點(diǎn)E平移后的對應(yīng)點(diǎn)為點(diǎn)E′,點(diǎn)A的對應(yīng)點(diǎn)為點(diǎn)A′,將△AOC繞點(diǎn)O順時針旋轉(zhuǎn)至△A1OC1的位置,點(diǎn)A,C的對應(yīng)點(diǎn)分別為點(diǎn)A1,C1,且點(diǎn)A1恰好落在AC上,連接C1A′,C1E′,△A′C1E′是否能為等腰三角形?若能,請求出所有符合條件的點(diǎn)E′的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在Rt△ABC中,∠ABC=90°,AC的垂直平分線分別與AC,BC及AB的延長線相交于點(diǎn)D,E,F(xiàn),⊙O是△BEF的外接圓,∠EBF的平分線交EF于點(diǎn)G,交⊙O于點(diǎn)H,連接BD、FH.
(1)試判斷BD與⊙O的位置關(guān)系,并說明理由;
(2)當(dāng)AB=BE=1時,求⊙O的面積;
(3)在(2)的條件下,求HG•HB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在四邊形ABCD中,AC平分∠BCD,AC⊥AB,E是BC的中點(diǎn),AD⊥AE.
(1)求證:AC2=CD•BC;
(2)過E作EG⊥AB,并延長EG至點(diǎn)K,使EK=EB.
①若點(diǎn)H是點(diǎn)D關(guān)于AC的對稱點(diǎn),點(diǎn)F為AC的中點(diǎn),求證:FH⊥GH;
②若∠B=30°,求證:四邊形AKEC是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在平面直角坐標(biāo)xOy中,正比例函數(shù)y=kx的圖象與反比例函數(shù)y=$\frac{m}{x}$的圖象都經(jīng)過點(diǎn)A(2,-2).
(1)分別求這兩個函數(shù)的表達(dá)式;
(2)將直線OA向上平移3個單位長度后與y軸交于點(diǎn)B,與反比例函數(shù)圖象在第四象限內(nèi)的交點(diǎn)為C,連接AB,AC,求點(diǎn)C的坐標(biāo)及△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,AB是⊙O的切線,B為切點(diǎn),AC經(jīng)過點(diǎn)O,與⊙O分別相交于點(diǎn)D,C.若∠ACB=30°,AB=$\sqrt{3}$,則陰影部分的面積是( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{π}{6}$C.$\frac{\sqrt{3}}{2}$-$\frac{π}{6}$D.$\frac{\sqrt{3}}{3}$-$\frac{π}{6}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

12.已知x1、x2是一元二次方程3x2=6-2x的兩根,則x1-x1x2+x2的值是( 。
A.$-\frac{4}{3}$B.$\frac{8}{3}$C.$-\frac{8}{3}$D.$\frac{4}{3}$

查看答案和解析>>

同步練習(xí)冊答案