如圖是瑞典人科赫(Koch)在1906年構(gòu)造的能夠描述雪花形狀的科赫雪花圖案.圖形的作法是,從一個正三角形開始,把每條邊分成三等份,然后以各邊的中間長度為底邊.分別向外作正三角形,再把“底邊”線段抹掉.反復(fù)進(jìn)行這一過程,就會得到一個“雪花”樣子的曲線.這是一個極有特色的圖形:在圖形不斷變換的過程中,它的周長趨于無窮大,而其面積卻趨于定值.如果假定原正三角形邊長為,則可算出下圖每步變換后科赫雪花的周長:=3,=     =     ,…,則=    

=;==,(1+1+2分)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖是瑞典人科赫(Koch)在1906年構(gòu)造的能夠描述雪花形狀的科赫雪花圖案.圖形的作法是:從一個正三角形開始,把每條邊分成三等份,然后以各邊的中間長度為底邊分別向外作正三角形,再把“底邊”線段抹掉.反復(fù)進(jìn)行這一過程,就會得到一個“雪花”樣子的曲線.這是一個極有特色的圖形:在圖形不斷變換的過程中,它的周長趨于無窮大,而其面積卻趨于定值.如果假定原正三角形邊長為a,則可算出下圖每步變換后科赫雪花的周長:C1=3a,C2=
 
,C3=
 
,…,則Cn=
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖是瑞典人科赫(Koch)在1906年構(gòu)造的能夠描述雪花形狀的科赫雪花圖案.圖形的作法是:從一個正三角形開始,把每條邊分成三等份,然后以各邊的中間長度為底邊分別向外作正三角形,再把“底邊”線段抹掉.反復(fù)進(jìn)行這一過程,就會得到一個“雪花”樣子的曲線.這是一個極有特色的圖形:在圖形不斷變換的過程中,它的周長趨于無窮大,而其面積卻趨于定值.如果假定原正三角形邊長為a,則可算出下圖每步變換后科赫雪花的周長:C1=3a,C2=________,C3=________,…,則Cn=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年浙江省杭州市杭二樹蘭中學(xué)“推優(yōu)入杭”計劃九年級數(shù)學(xué)試卷(解析版) 題型:填空題

如圖是瑞典人科赫(Koch)在1906年構(gòu)造的能夠描述雪花形狀的科赫雪花圖案.圖形的作法是:從一個正三角形開始,把每條邊分成三等份,然后以各邊的中間長度為底邊分別向外作正三角形,再把“底邊”線段抹掉.反復(fù)進(jìn)行這一過程,就會得到一個“雪花”樣子的曲線.這是一個極有特色的圖形:在圖形不斷變換的過程中,它的周長趨于無窮大,而其面積卻趨于定值.如果假定原正三角形邊長為a,則可算出下圖每步變換后科赫雪花的周長:C1=3a,C2=    ,C3=    ,…,則Cn=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市江干區(qū)中考數(shù)學(xué)模擬試卷(解析版) 題型:填空題

如圖是瑞典人科赫(Koch)在1906年構(gòu)造的能夠描述雪花形狀的科赫雪花圖案.圖形的作法是:從一個正三角形開始,把每條邊分成三等份,然后以各邊的中間長度為底邊分別向外作正三角形,再把“底邊”線段抹掉.反復(fù)進(jìn)行這一過程,就會得到一個“雪花”樣子的曲線.這是一個極有特色的圖形:在圖形不斷變換的過程中,它的周長趨于無窮大,而其面積卻趨于定值.如果假定原正三角形邊長為a,則可算出下圖每步變換后科赫雪花的周長:C1=3a,C2=    ,C3=    ,…,則Cn=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年浙江省杭州市中考數(shù)學(xué)模擬試卷(解析版) 題型:填空題

(2010•江干區(qū)模擬)如圖是瑞典人科赫(Koch)在1906年構(gòu)造的能夠描述雪花形狀的科赫雪花圖案.圖形的作法是:從一個正三角形開始,把每條邊分成三等份,然后以各邊的中間長度為底邊分別向外作正三角形,再把“底邊”線段抹掉.反復(fù)進(jìn)行這一過程,就會得到一個“雪花”樣子的曲線.這是一個極有特色的圖形:在圖形不斷變換的過程中,它的周長趨于無窮大,而其面積卻趨于定值.如果假定原正三角形邊長為a,則可算出下圖每步變換后科赫雪花的周長:C1=3a,C2=    ,C3=    ,…,則Cn=   

查看答案和解析>>

同步練習(xí)冊答案