【題目】在△ABC中,∠BCA=90,AC=6,BC=8,DAB的中點,將△ACD沿直線CD折疊得到△ECD,連接BE,則線段BE的長等于(

A.5B.C.D.

【答案】C

【解析】

根據(jù)勾股定理及直角三角形的中線、翻折得CD=DE=BD=5,CE=AC=6,作DHBEH,EGCDG,證明△DHE≌△EGD,利用勾股定理求出,即可得到BE.

∠BCA=90,AC=6BC=8,

DAB的中點,

AD=BD=CD=5

由翻折得:DE=AD=5,∠EDC=ADC,CE=AC=6,

BD=DE,

DHBEH,EGCDG

∴∠DHE=EGD=90,∠EDH=BDE=180-2EDC=90-EDC,

∴∠DEB= 90-EDH=90-(90-EDC)=EDC,

DE=DE,

∴△DHE≌△EGD,

DH=EG,EH=DG,

DG=x,則CG=5-x,

=,

,

,

BE=2EH=,

故選:C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,數(shù)學興趣小組的小穎想測量教學樓前的一棵樹的樹高,下午課外活動時她測得一根長為1m的竹竿的影長是0.8m,但當她馬上測量樹高時,發(fā)現(xiàn)樹的影子不全落在地面上,有一部分影子落在教學樓的墻壁上(如圖),他先測得留在墻壁上的影高為1.2m,又測得地面的影長為2.6m,請你幫她算一下,樹高是( 。

A.4.25mB.4.45mC.4.60mD.4.75m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,點A的坐標為(0,7),點B的坐標為(0,3),點C的坐標為(3,0).

1)在圖中作出△ABC的外接圓(利用格圖確定圓心);

2)圓心坐標為   ;外接圓半徑r   ;

2)若在x軸的正半軸上有一點D,且∠ADB=∠ACB,則點D的坐標為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y=ax22xa0)與x軸交于點AB(點A在點B的左側).

1)當a=1時,求A,B兩點的坐標;

2)過點P30)作垂直于x軸的直線l,交拋物線于點C

①當a=2時,求PB+PC的值;

②若點B在直線l左側,且PB+PC14,結合函數(shù)的圖象,直接寫出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P上一動點,連接AP,作∠APC=45°,交弦AB于點CAB=6cm

小元根據(jù)學習函數(shù)的經(jīng)驗,分別對線段AP,PCAC的長度進行了測量.

下面是小元的探究過程,請補充完整:

1)下表是點P上的不同位置,畫圖、測量,得到線段APPC,AC長度的幾組值,如下表:

AP/cm

0

1.00

2.00

3.00

4.00

5.00

6.00

PC/cm

0

1.21

2.09

2.69

m

2.82

0

AC/cm

0

0.87

1.57

2.20

2.83

3.61

6.00

①經(jīng)測量m的值是 (保留一位小數(shù)).

②在AP,PC,AC的長度這三個量中,確定的長度是自變量,的長度和 的長度都是這個自變量的函數(shù);

2)在同一平面直角坐標系xOy中,畫出(1)中所確定的函數(shù)圖象;

3)結合函數(shù)圖象,解決問題:當ACP為等腰三角形時,AP的長度約為 cm(保留一位小數(shù)).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,設拋物線Ty=ax2+c(a> 0)與直線L:y=kx-4(k> 0)A,B兩點(點B在點A的右側).

1)如圖,若點A,-),且a+c=-1.

①求拋物線T和直線L的解析式;

②求△AOB的面積.

2)設點C是點B關于y軸的對稱點,當點A,O,C三點共線時,求實數(shù)c的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司根據(jù)市場需求銷售A、B兩種型號的凈水器,每臺A型凈水器比每臺B型凈水器進價多200元,用5萬元購進A型凈水器與用4.5萬元購進B型凈水器的數(shù)量相等.

1)求每臺A型、B型凈水器的進價各是多少元?

2)該公司計劃用不超過9.8萬元購進A,B兩種型號的凈水器共50臺,其中A型、B型凈水器每臺售價分別為2500元、2180元,設A型凈水器為x臺.

x的取值范圍.

若公司決定從銷售A型凈水器的利潤中每臺捐獻a100a150)元給貧困村飲水改造愛心工程,求售完這50臺凈水器后獲得的最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:t1,t2是方程t2+2t240的兩個實數(shù)根,且t1t2,拋物線yx2+bx+c的圖象經(jīng)過點At10),B0,t2).

1)求這個拋物線的解析式;

2)設點Px,y)是拋物線上一動點,且位于第三象限,四邊形OPAQ是以OA為對角線的平行四邊形,求平行四邊形OPAQ的面積Sx之間的函數(shù)關系式,并寫出自變量x的取值范圍;

3)在(2)的條件下,當平行四邊形OPAQ的面積為24時,是否存在這樣的點P,使OPAQ為正方形?若存在,求出P點坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】校園內有一個由兩個全等的六邊形(邊長為)圍成的花壇,現(xiàn)將這個花壇在原有的基礎上擴建成如圖所示的一個菱形區(qū)域,并在新擴建的部分種上草坪,則擴建后菱形區(qū)域的周長為(

A.B.C.D.

查看答案和解析>>

同步練習冊答案