【題目】如圖,在△ABC中,AB=13,BC=14,AC=15,點(diǎn)D在AC上(可與點(diǎn)A,C重合),分別過(guò)點(diǎn)A、C作直線(xiàn)BD的垂線(xiàn),垂足為E,F,則AE+CF的最大值為_____,最小值為_____.
【答案】15 12
【解析】
設(shè)AE=m,CF=n,則m+n=y,用m、n及x表示出△ABD及△CBD的面積,根據(jù)S△ABC=S△ABD+S△CBD即可得到m+n關(guān)于x的反比例函數(shù)關(guān)系式.根據(jù)垂直線(xiàn)段最短的性質(zhì),當(dāng)BD⊥AC時(shí),x最小,由面積公式可求得;因?yàn)?/span>AB=13,BC=14,所以當(dāng)BD=BC=14時(shí),x最大.從而根據(jù)反比例函數(shù)的性質(zhì)求出y的最大值和最小值.
設(shè)BD=x,AE+CF=y,AE=m,CF=n,則m+n=y,
∵由三角形面積公式,得,,
∴,
∴,即.
∵△ABC中AC邊上的高為,
∴x的取值范圍為.
∵m+n隨x的增大而減小,
∴當(dāng)時(shí),y的最大值為15,當(dāng)x=14時(shí),y的最小值為12.
故答案為:15,12.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知O是直線(xiàn)AB上的一點(diǎn),∠COD是直角,OE平分∠BOC.
(1)如圖①,若∠AOC=30°,求∠DOE的度數(shù).
(2)在圖①中,若∠AOC=α,求∠DOE的度數(shù)(用含α的代數(shù)式表示).
(3)將圖①中的∠DOC繞頂點(diǎn)O順時(shí)針旋轉(zhuǎn)至圖②的位置,且保持射線(xiàn)OC在直線(xiàn)AB上方,在整個(gè)旋轉(zhuǎn)過(guò)程中,當(dāng)∠AOC的度數(shù)是多少時(shí),∠COE=2∠DOB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的邊長(zhǎng)為2,∠A=60°,以點(diǎn)B為圓心的圓與AD、DC相切,與AB、CB的延長(zhǎng)線(xiàn)分別相交于點(diǎn)E,F(xiàn),則圖中陰影部分的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形中,相交于點(diǎn),分別為上的兩點(diǎn),,,分別交于兩點(diǎn),連,下列結(jié)論:①;②;③;④ ,其中正確的是( )
A. ①②B. ①④C. ①②④D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2-2(m-1)x-m(m+2)=0
(1) 求證:此方程總有兩個(gè)不相等的實(shí)數(shù)根
(2) 若x=-2是此方程的一個(gè)根,求實(shí)數(shù)m的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是⊙O的內(nèi)接三角形,AB=AC,∠BCA=65°,作CD∥AB,并與○O相交于點(diǎn)D,連接BD,則∠DBC的大小為
A. 15° B. 35° C. 25° D. 45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某校園的學(xué)子餐廳把密碼做成了數(shù)學(xué)題,小亮在餐廳就餐時(shí),思索了一會(huì),輸入密碼,順利地連接到了學(xué)子餐廳的網(wǎng)絡(luò).
(1)如果是2,那么他輸入的密碼是___________.
(2)若他輸入的密碼是4235,最后兩位被隱藏了,那么被隱藏的兩位數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題提出
(1)如圖①,在△ABC中,∠A=120°,AB=AC=5,則△ABC的外接圓半徑R的值為 .
問(wèn)題探究
(2)如圖②,⊙O的半徑為13,弦AB=24,M是AB的中點(diǎn),P是⊙O上一動(dòng)點(diǎn),求PM的最大值.
問(wèn)題解決
(3)如圖③所示,AB、AC、BC是某新區(qū)的三條規(guī)劃路其中,AB=6km,AC=3km,∠BAC=60°,BC所對(duì)的圓心角為60°.新區(qū)管委會(huì)想在BC路邊建物資總站點(diǎn)P,在AB、AC路邊分別建物資分站點(diǎn)E、F.也就是,分別在、線(xiàn)段AB和AC上選取點(diǎn)P、E、F.由于總站工作人員每天要將物資在各物資站點(diǎn)間按P→E→F→P的路徑進(jìn)行運(yùn)輸,因此,要在各物資站點(diǎn)之間規(guī)劃道路PE、EF和FP.為了快捷環(huán)保和節(jié)約成本要使得線(xiàn)段PE、EF、FP之和最短,試求PE+EF+FP的最小值(各物資站點(diǎn)與所在道路之間的距離、路寬均忽略不計(jì)).
圖① 圖② 圖③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等邊三角形,BD是中線(xiàn),延長(zhǎng)BC至E,使CE=CD.
(1)求證:DB=DE;
(2)過(guò)點(diǎn)D作DF垂直BE,垂足為F,若CF=3,求△ABC的周長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com