(2011•寶安區(qū)一模)如圖,已知∠BAD=∠CAD,則下列條件中不一定能使△ABD≌△ACD的是( 。
分析:利用全等三角形判定定理ASA,SAS,AAS對各個(gè)選項(xiàng)逐一分析即可得出答案.
解答:解:A、∵∠BAD=∠CAD,AD為公共邊,若∠B=∠C,則△ABD≌△ACD(AAS);
B、∵∠BAD=∠CAD,AD為公共邊,若∠BDA=∠CDA,則△ABD≌△ACD(ASA);
C、∵∠BAD=∠CAD,AD為公共邊,若AB=AC,則△ABD≌△ACD(SAS);
D、∵∠BAD=∠CAD,AD為公共邊,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;
故選:D.
點(diǎn)評:此題主要考查學(xué)生對全等三角形判定定理的理解和掌握,此題難度不大,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2011•寶安區(qū)一模)如圖是一個(gè)球體的一部分,下列四個(gè)選項(xiàng)中是它的俯視圖的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•寶安區(qū)一模)如圖,A、B、C是三座城市,A市在B市的正西方向.C市在A市北偏東60°的方向,在B市北偏東30°的方向.這三座城市之間有高速公路l1、l2、l3相互貫通.小亮駕車從A市出發(fā),以平均每小時(shí)80公里的速度沿高速公路l2向C市駛?cè)ィ?小時(shí)后小亮到達(dá)了C市.
(1)求C市到高速公路l1的最短距離;
(2)如果小亮以相同的速度從C市沿C→B→A的路線從高速公路返回A市.那么經(jīng)過多長時(shí)間后,他能回到A市?(結(jié)果精確到0.1小時(shí))(
3
≈1.732

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•寶安區(qū)一模)解方程:x2-4x+3=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•寶安區(qū)一模)如圖是我們學(xué)過的反比例函數(shù)圖象,它的函數(shù)解析式可能是( 。

查看答案和解析>>

同步練習(xí)冊答案