【題目】如圖(1),拋物線y=ax2+bx+3經(jīng)過A(-3,0),B(-1,0)兩點(diǎn).

(1)求拋物線的解析式;

(2)設(shè)拋物線的頂點(diǎn)為M,直線y=-2x+9y軸交于點(diǎn)C,與直線OM交于點(diǎn)D.現(xiàn)將拋物線平移,保持頂點(diǎn)在直線OD.若平移的拋物線與射線CD(含端點(diǎn)C)只有一個(gè)公共點(diǎn),求它的頂點(diǎn)橫坐標(biāo)的值或取值范圍;

(3)如圖(2),將拋物線平移,當(dāng)頂點(diǎn)至原點(diǎn)時(shí),過Q(0,3)作不平行于x軸的直線交拋物線于E,F(xiàn)兩點(diǎn).問在y軸的負(fù)半軸上是否存在點(diǎn)P,使△PEF的內(nèi)心在y軸上.若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】(1)拋物線的解析式為y=x2+4x+3;(2) h=4≤h<;(3)y軸的負(fù)半軸上存在點(diǎn)P(0,-3),使△PEF的內(nèi)心在y軸上.

【解析】

(1)將A(-3,0)、B(-1,0),代入y=ax2+bx+3求出即可,再利用平方法求出頂點(diǎn)坐標(biāo)即可;

(2)配方后即可確定其頂點(diǎn)坐標(biāo),然后利用平移規(guī)律確定函數(shù)的解析式,然后根據(jù)線段與拋物線有唯一的公共點(diǎn)求得h的值或取值范圍即可;

(3)將拋物線平移,當(dāng)頂點(diǎn)至原點(diǎn)時(shí),其解析式為y=x2,設(shè)MN的解析式為y=kx+3(k≠0).假設(shè)存在滿足題設(shè)條件的點(diǎn)P(0,t),過PGHx軸,分別過M,NGH的垂線,垂足為G,H.根據(jù)PMN的內(nèi)心在y軸上,得到∠GMP=MPQ=QPN=HNP,從而GMP∽△HNP,利用相似三角形對(duì)應(yīng)邊成比例即可列出有關(guān)t的方程求解即可.

(1)拋物線y=ax2+bx+3經(jīng)過A(-3,0),B(-1,0)兩點(diǎn)

9a-3b+3=0a-b+3=0

解得a=1,b=4

∴拋物線的解析式為y=x2+4x+3

(2)由(1)配方得y=(x+2)2-1

∴拋物線的頂點(diǎn)M(-2,-1)

∴直線OM的解析式為y=x

于是設(shè)平移的拋物線的頂點(diǎn)坐標(biāo)為(h,h),

∴平移的拋物線解析式為y=(x-h)2+h,.

①當(dāng)拋物線經(jīng)過點(diǎn)E時(shí),

C(0,9),

h2+h=9,

解得h=

∴當(dāng)≤h<時(shí),平移的拋物線與線段EF只有一個(gè)公共點(diǎn).

②當(dāng)拋物線與線段CD只有一個(gè)公共點(diǎn)時(shí),

由方程組y=(x-h)2+h,y=-2x+9.

x2+(-2h+2)x+h2+h-9=0,

∴△=(-2h+2)2-4(h2+h-9)=0,

解得h=4.

此時(shí)拋物線y=(x-4)2+2與線段CD唯一的公共點(diǎn)為(3,3),符合題意.

綜上:平移的拋物線與線段CD只有一個(gè)公共點(diǎn)時(shí),頂點(diǎn)橫坐標(biāo)的值或取值范圍是h=4≤h<

(3)將拋物線平移,當(dāng)頂點(diǎn)至原點(diǎn)時(shí),其解析式為y=x2,

設(shè)EF的解析式為y=kx+3(k≠0).

假設(shè)存在滿足題設(shè)條件的點(diǎn)P(0,t),過PGHx軸,分別過E,F(xiàn)GH的垂線,垂足為G,H.

∵△PEF的內(nèi)心在y軸上,

∴∠GEP=EPQ=QPF=HFP,

∴△GEP∽△HFP,

,

2kxExF=(t-3)(xE+xF

y=x2,y=kx+3.得x2-kx-3=0.

xE+xF=k,xExF=-3.

2k(-3)=(t-3)k,

k≠0,

t=-3.

y軸的負(fù)半軸上存在點(diǎn)P(0,-3),使PEF的內(nèi)心在y軸上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)二次函數(shù)yx2+2mx+1,當(dāng)0x≤4時(shí)函數(shù)值總是非負(fù)數(shù),則實(shí)數(shù)m的取值范圍為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖等腰直角沿MN所在的直線以的速度向右作勻速直線運(yùn)動(dòng),若,則和正方形重疊部分的面積與勻速運(yùn)動(dòng)所有的時(shí)間之間函數(shù)的大致圖像是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,直線CD⊙O于點(diǎn)M,BE⊥CD于點(diǎn)E

1)求證:∠BME=∠MAB

2)求證:BM2=BEAB;

3)若BE=,sinBAM=,求線段AM的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018杭州馬拉松競(jìng)賽”的個(gè)人競(jìng)賽項(xiàng)目共有三項(xiàng):A.“馬拉松”,B.“半程馬拉松”,C.“迷你馬拉松”.小明和小剛參加了該賽事的志愿者服務(wù)工作,組委會(huì)隨機(jī)將志愿者分配到三個(gè)項(xiàng)目組.

1)小明被分配到“迷你馬拉松”項(xiàng)目組的概率為______

2)請(qǐng)用畫樹狀圖或列表的方法,求出小明和小剛被分配到同一項(xiàng)目組的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)所示是某立式家具(角書櫥)的橫斷面,請(qǐng)你設(shè)計(jì)一個(gè)方案(角書櫥高2米,房間高2.6米,所以不必從高度方面考慮方案的設(shè)計(jì)),按此方案,可使該家具通過圖(2)中的長(zhǎng)廊搬入房間.在圖(3)中把你設(shè)計(jì)的方案畫成草圖,并說明按此方案可把家具搬入房間的理由(注:搬運(yùn)過程中不準(zhǔn)拆卸家具,不準(zhǔn)損壞墻壁)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】修建隧道可以方便出行.如圖:,兩地被大山阻隔,由地到地需要爬坡到山頂地,再下坡到.若打通穿山隧道,建成直達(dá),兩地的公路,可以縮短從地到地的路程.已知:從坡面的坡度,從坡面的坡角公里.

1)求隧道打通后從的總路程是多少公里?(結(jié)果保留根號(hào))

2)求隧道打通后與打通前相比,從地到地的路程約縮短多少公里?(結(jié)果精確到0.01)(,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線的對(duì)稱軸為直線,且拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn),其中,.

(1)若直線經(jīng)過、兩點(diǎn),求直線和拋物線的解析式;

(2)在拋物線的對(duì)稱軸上找一點(diǎn),使點(diǎn)到點(diǎn)的距離與到點(diǎn)的距離之和最小,求出點(diǎn)的坐標(biāo);

(3)設(shè)點(diǎn)為拋物線的對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),求使為直角三角形的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一段路的擁堵延時(shí)指數(shù)計(jì)算公式為:擁堵延時(shí)指數(shù)=,指數(shù)越大,道路越堵。高德大數(shù)據(jù)顯示第二季度重慶擁堵延時(shí)指數(shù)首次排全國(guó)榜首。為此,交管部門在A、B兩擁堵路段進(jìn)行調(diào)研:A路段平峰時(shí)汽車通行平均時(shí)速為45千米/時(shí),B路段平峰時(shí)汽車通行平均時(shí)速為50千米/時(shí),平峰時(shí)A路段通行時(shí)間是B路段通行時(shí)間的倍,且A路段比B路段長(zhǎng)1千米.

1)分別求平峰時(shí)A、B兩路段的通行時(shí)間;

2)第二季度大數(shù)據(jù)顯示:在高峰時(shí),A路段的擁堵延時(shí)指數(shù)為2,每分鐘有150輛汽車進(jìn)入該路段;B路段的擁堵延時(shí)指數(shù)為1.8,每分鐘有125輛汽車進(jìn)入該路段。第三季度,交管部門采用了智能紅綠燈和潮汐車道的方式整治,擁堵狀況有明顯改善,在高峰時(shí),A路段擁堵延時(shí)指數(shù)下降了a%,每分鐘進(jìn)入該路段的車輛增加了;B路段擁堵延時(shí)指數(shù)下降,每分鐘進(jìn)入該路段的車輛增加了a輛。這樣,整治后每分鐘分別進(jìn)入兩路段的車輛通過這兩路段所用時(shí)間總和,比整治前每分鐘分別進(jìn)入這兩段路的車輛通過這兩路段所用時(shí)間總和多小時(shí),求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案