如圖,已知O是平面直角坐標(biāo)系的原點(diǎn),半徑為1的⊙B經(jīng)過點(diǎn)O,且與xy
軸分別交于點(diǎn)AC,點(diǎn)A的坐標(biāo)為(-,0),AC的延長(zhǎng)線與⊙B的切線OD
交于點(diǎn)D.
(1)求OC的長(zhǎng)和∠CAO的度數(shù);
(2)求點(diǎn)D的坐標(biāo);
(3)求過點(diǎn)A,OD三點(diǎn)的拋物線的解析式;
(4)在(3)中,點(diǎn)P是拋物線上的一點(diǎn),試確定點(diǎn)P的位置,使得△AOP
面積與△AOC的面積相等.

(1)∵∠AOC=90o,
AC是⊙O的直徑,∴AC=2.
又∵點(diǎn)A的坐標(biāo)為(-,0),∴OA=.
OC===1.
∴sin∠CAO==,∴∠CAO=30o.………2分
(2)如圖,連接OB,過點(diǎn)DDEx軸于點(diǎn)E.
OD為⊙O的切線,∴OBOD,∴∠BOD=90o.
AB=OB,∴∠AOB=∠OAB=30o.
∴∠AOD=∠AOB+∠BOD=90o +30o=120o.…………4分
在△AOD中,∠ODA=180o-120o-30o=30o=∠OAD
OD=OA=.
在Rt△DOE中,∠DOE=180o-120o=60o. ∴OE=OD·cos60o=OD=,
ED=OD·sin60o= . ∴點(diǎn)D的坐標(biāo)為(,)……………………7分
(3)因?yàn)檫^點(diǎn)A,OD三點(diǎn)的拋物線過原點(diǎn),故設(shè)其解析式為y=ax2+bx.
A(-,0),D(,)代入解析式,得
解得
∴過點(diǎn)A,OD三點(diǎn)的拋物線解析式為y=x2+x..………………10分
(4)∵△AOP與△AOC面積相等,且有公共邊OA,
OA邊上的高相等
設(shè)P點(diǎn)的為(x,y),則=OC=1,y=±1.
當(dāng)y=1時(shí),x2+x=1,解方程得,x1=,x2=………………11分
當(dāng)y=-1時(shí),x2+x=-1,此方程△<0,方程無解.
∴當(dāng)P點(diǎn)的坐標(biāo)是(,1)或(,1)時(shí),△AOP與△AOC面積相等.……………………………………………………………………………………12分

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,原點(diǎn)O處有一乒乓球發(fā)射器向空中發(fā)射乒乓球,乒乓球飛行路線是一條拋物線,在地面上落點(diǎn)落在X軸上為點(diǎn)B.有人在線段OB上點(diǎn)C(靠點(diǎn)B一側(cè))豎直向上擺放無蓋的圓柱形桶,試圖讓乒乓球落入桶內(nèi).已知OB=4米,OC=3米,乒乓球飛行最大高度MN=5米,圓柱形桶的直徑為0.5,高為0.3米(乒乓球的體積和圓柱形桶的厚度忽略不計(jì)).
(1)求乒乓球飛行路線拋物線的解析式;
(2)如果豎直擺放5個(gè)圓柱形桶時(shí),乒乓球能不能落入桶內(nèi)?
(3)當(dāng)豎直擺放圓柱形桶
8,9,10,11或12
8,9,10,11或12
個(gè)時(shí),乒乓球可以落入桶內(nèi)?(直接寫出滿足條件的一個(gè)答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖1,在平面直角坐標(biāo)系內(nèi),直線l1:y=-x+4與坐標(biāo)軸分別相交于點(diǎn)A、B,與直線l2y=
13
x
相交于點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo);
(2)如圖1,平行于y軸的直線x=1交直線l1于點(diǎn)E,交直線l2于點(diǎn)D,平行于y軸的直x=a交直線l1于點(diǎn)M,交直線l2于點(diǎn)N,若MN=2ED,求a的值;
(3)如圖2,點(diǎn)P是第四象限內(nèi)一點(diǎn),且∠BPO=135°,連接AP,探究AP與BP之間的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知線段AB=4,點(diǎn)C是平面上一點(diǎn)(不與A,B重合),M、N分別是線段CA,CB的中點(diǎn).
(1)當(dāng)C在線段AB上時(shí),如圖,求MN的長(zhǎng);
(1)當(dāng)C在線段AB的延長(zhǎng)線上時(shí),畫出圖形,并求MN長(zhǎng);
(2)當(dāng)C在直段AB外時(shí),畫出圖形,量一量,寫出MN的長(zhǎng)(不寫理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 北師大八年級(jí)版 2009-2010學(xué)年 第19-26期 總第175-182期 北師大版 題型:022

如圖,已知甲運(yùn)動(dòng)方式為:先豎直向上運(yùn)動(dòng)1個(gè)單位長(zhǎng)度,再水平向右移動(dòng)2個(gè)單位長(zhǎng)度;乙運(yùn)動(dòng)方式為:先豎直向下運(yùn)動(dòng)2個(gè)單位長(zhǎng)度,再水平向左移動(dòng)3個(gè)單位長(zhǎng)度.在平面直角坐標(biāo)系內(nèi),現(xiàn)有一動(dòng)點(diǎn)P,第一次從原點(diǎn)O出發(fā)按甲方式運(yùn)動(dòng)到點(diǎn)P1,第二次從點(diǎn)P1出發(fā)按乙方式運(yùn)動(dòng)到點(diǎn)P2,第三次從點(diǎn)P2出發(fā)再按甲方式運(yùn)動(dòng)到點(diǎn)P3,第四次從點(diǎn)P3出發(fā)在按乙方式運(yùn)動(dòng)到P4,…依此運(yùn)動(dòng)規(guī)律,則經(jīng)過第11次運(yùn)動(dòng)后,動(dòng)點(diǎn)P所在位置P11的坐標(biāo)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知,如圖1,在平面直角坐標(biāo)系內(nèi),直線l1:y=-x+4與坐標(biāo)軸分別相交于點(diǎn)A、B,與直線l2數(shù)學(xué)公式相交于點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo);
(2)如圖1,平行于y軸的直線x=1交直線l1于點(diǎn)E,交直線l2于點(diǎn)D,平行于y軸的直x=a交直線l1于點(diǎn)M,交直線l2于點(diǎn)N,若MN=2ED,求a的值;
(3)如圖2,點(diǎn)P是第四象限內(nèi)一點(diǎn),且∠BPO=135°,連接AP,探究AP與BP之間的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案