【題目】(1)問題發(fā)現(xiàn):如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)A,D,E在同一直線上,連接BE,則∠AEB的度數(shù)為 ,線段AD、BE之間的關(guān)系 .
(2)拓展探究:如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)A、D、E在同一直線上,CM為△DCE中DE邊上的高,連接BE.①請判斷∠AEB的度數(shù),并說明理由;②當(dāng)CM=5時(shí),AC比BE的長度多6時(shí),求AE的長.
【答案】(1)60°;相等;(2)①∠AEB=90°;②AE= 17.
【解析】
(1)易證∠ACD=∠BCE,即可求證△ACD≌△BCE,根據(jù)全等三角形對應(yīng)邊相等可求得AD=BE,根據(jù)全等三角形對應(yīng)角相等即可求得∠AEB的大;
(2)易證△ACD≌△BCE,利用勾股定理進(jìn)行解答即可.
解:(1)∵∠ACB=∠DCE,∠DCB=∠DCB,
∴∠ACD=∠BCE,
在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS),
∴AD=BE,∠CEB=∠ADC=180°﹣∠CDE=120°,
∴∠AEB=∠CEB﹣∠CED=60°,
故答案為:60°;相等;
(2)①∠AEB=90°,
∵△ACB和△DCE均為等腰直角三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=90°,
∴∠ACD=∠BCE.
在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS),
∴AD=BE,∠ADC=∠BEC.
∵△DCE為等腰直角三角形,
∴∠CDE=∠CED=45°,
∵點(diǎn)A、D、E在同一直線上,
∴∠ADC=135°.
∴∠BEC=135°,
∴∠AEB=∠BEC﹣∠CED=90°.
②∵CD=CE,CM⊥DE,
∴DM=ME=5.
在Rt△ACM中,AM2+CM2=AC2,
設(shè):BE=AD=x,則AC=(6+x),
(x+5)2+52=(x+6)2,
解得:x=7.
所以可得:AE=AD+DM+ME=17.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,延長AB至E,延長CD至F,BE=DF,連接EF,與BC、AD分別相交于P、Q兩點(diǎn).
(1)求證:CP=AQ;
(2)若BP=1,PQ=2 ,∠AEF=45°,求矩形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
(1)計(jì)算:|﹣ |﹣2cos45°﹣( )﹣1+(tan80°﹣ )0+
(2)化簡:( ﹣2)÷ ﹣2x,再代入一個(gè)合適的x求值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC和∠ABC的平分線相交于點(diǎn)O,過點(diǎn)O作EF∥AB交BC于F,交AC于E,過點(diǎn)O作OD⊥BC于D,下列四個(gè)結(jié)論:
①∠AOB=90°+∠C;②AE+BF=EF;③當(dāng)∠C=90°時(shí),E,F分別是AC,BC的中點(diǎn);④若OD=a,CE+CF=2b,則S△CEF=ab.其中正確的是( 。
A. ①② B. ③④ C. ①②④ D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某鎮(zhèn)水庫的可用水量為12000萬m3,假設(shè)年降水量不變,能維持該鎮(zhèn)16萬人20年的用水量.為實(shí)施城鎮(zhèn)化建設(shè),新遷入了4萬人后,水庫只能夠維持居民15年的用水量.
(1)問:年降水量為多少萬m3?每人年平均用水量多少m3?
(2)政府號(hào)召節(jié)約用水,希望將水庫的使用年限提高到25年.則該鎮(zhèn)居民人均每年需節(jié)約多少m3水才能實(shí)現(xiàn)目標(biāo)?
(3)某企業(yè)投入1000萬元設(shè)備,每天能淡化5000m3海水,淡化率為70%.每淡化1m3海水所需的費(fèi)用為1.5元,政府補(bǔ)貼0.3元.企業(yè)將淡化水以3.2元/m3的價(jià)格出售,每年還需各項(xiàng)支出40萬元.按每年實(shí)際生產(chǎn)300天計(jì)算,該企業(yè)至少幾年后能收回成本(結(jié)果精確到個(gè)位)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AD=AE,∠B=∠C,∠BAE=∠CAD,BD與CE相于點(diǎn)F.
求證:(1)AB=AC;(2)FB=FC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的袋中裝有一紅一白2個(gè)球,這些球除顏色外都相同,小剛從袋中隨機(jī)摸出一個(gè)球,記下顏色后放回袋中,再從袋中隨機(jī)摸出一個(gè)球,兩次都摸到紅球的概率是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com