【題目】如圖,在數(shù)軸上每相鄰兩點間的距離為一個單位長度,點、、、對應的數(shù)分別是,且.

1)那么 ,

2)點個單位/秒的速度沿著數(shù)軸的正方向運動,秒后點個單位/秒的速度也沿著數(shù)軸的正方向運動,當點到達點處立刻返回,與點在數(shù)軸的某點處相遇,求這個點對應的數(shù);

3)如果兩點以(2)中的速度同時向數(shù)軸的負方向運動,點從圖上的位置出發(fā)也向數(shù)軸的負方向運動,且始終保持,當點運動到時,點對應的數(shù)是多少?

【答案】1,;(2)這個點對應的數(shù)為;(3)點對應的數(shù)為

【解析】

(1)根據(jù)數(shù)軸可知,然后代入等式求出a的值,再根據(jù)數(shù)軸確定出原點即可;
(2)根據(jù)相遇問題求得相遇時間,再計算即可求解;
(3)根據(jù)列出方程,再分兩種情況討論即可求解.

解:(1)由圖可知:,

,

解得

;

2)由(1)可知:,,,,

運動到點所花的時間為

設運動的時間為秒,

對應的數(shù)為,

對應的數(shù)為:.

、兩點相遇時,,

.

答:這個點對應的數(shù)為;

3)設運動的時間為

對應的數(shù)為:

對應的數(shù)為:

對應的數(shù)為

①當,;

②當,,不符合實際情況,

答:點對應的數(shù)為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(2013年四川南充3分)如圖,把矩形ABCD沿EF翻折,點B恰好落在AD邊的B′處,若AE=2,DE=6,EFB=60°,則矩形ABCD的面積是【 】

A.12 B. 24 C. 12 D. 16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知A′B′C′是由ABC經過平移得到的,它們各頂點在平面直角坐標系中的坐標如下表所示:

ABC

A(a,0)

B(3,0)

C(5,5)

A′B′C′

A′(4,2)

B′(7,b)

C′(c,7)

(1)觀察表中各對應點坐標的變化,并填空:a=________,b=________,c=________;

(2)在平面直角坐標系中畫出ABC及平移后的A′B′C′;

(3)直接寫出A′B′C′的面積是________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐:

氫動力汽車是一種真正實現(xiàn)零排放的交通工具,排放出的是純凈水,其具有無污染,零排放,儲量豐富等優(yōu)勢,因此,氫動力汽車是傳統(tǒng)汽車最理想的替代方案.某實驗團隊進行氫動力汽車實驗,在一條筆直的公路上有,兩地,小張駕駛氫動力汽車從地去地然后立即原路返回到地,小陳駕駛觀察車從地駛向.如圖是氫動力汽車、觀察車離地的距離和行駛時間之間的函數(shù)圖象,請根據(jù)圖象回答下列問題:

1兩地的距離是______,小陳駕駛觀察車行駛的速度是______;

2)當小張駕駛氫動力汽車從地原路返回地時,有一段時間小陳駕駛的觀察車與氫動力汽車之間的距離不超過30千米,請?zhí)骄看藭r行駛時間在哪一范圍內?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD、DEFG都是正方形連接AE、CG.

(1)求證AE=CG

(2)觀察圖形,猜想AE與CG之間的位置關系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了綠化環(huán)境,某中學八年級(3班)同學都積極參加了植樹活動,下面是今年3月份該班同學植樹情況的形統(tǒng)計圖和不完整的條形統(tǒng)計圖:

請根據(jù)以上統(tǒng)計圖中的信息解答下列問題.

1)植樹3株的人數(shù)為   ;

2)該班同學植樹株數(shù)的中位數(shù)是   ;

3)求該班同學平均植樹的株數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某學校學生的個性特長發(fā)展情況,在全校范圍內隨機抽查了部分學生參加音樂、體育、美術、書法等活動項目(每人只限一項)的情況.并將所得數(shù)據(jù)進行了統(tǒng)計,結果如圖所示.

(1)求在這次調查中,一共抽查了多少名學生;

(2)求出扇形統(tǒng)計圖中參加音樂活動項目所對扇形的圓心角的度數(shù);

(3)若該校有2400名學生,請估計該校參加美術活動項目的人數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖,正方形中,點分別在邊,上,,延長到點,使,連結,.求證:.

2)如圖,等腰直角三角形中,,,點在邊上,且,若,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】雷達二維平面定位的主要原理是:測量目標的兩個信息距離和角度,目標的表示方法為,其中,m表示目標與探測器的距離;表示以正東為始邊,逆時針旋轉后的角度.如圖,雷達探測器顯示在點A,B,C處有目標出現(xiàn),其中,目標A的位置表示為,目標C的位置表示為.用這種方法表示目標B的位置,正確的是(

A. (-4, 150°) B. (4, 150°) C. (-2, 150°) D. (2, 150°)

查看答案和解析>>

同步練習冊答案