(2005•福州)下列根式中,與是同類二次根式的是( )
A.
B.
C.
D.
【答案】分析:根據(jù)同類二次根式的定義解答即可.
解答:解:A、=2被開方數(shù)不同,不是同類二次根式;
B、=被開方數(shù)不同,不是同類二次根式;
C、=被開方數(shù)不同,不是同類二次根式;
D、=2,與被開方數(shù)相同,是同類二次根式.
故選D.
點(diǎn)評(píng):此題主要考查了同類二次根式的定義:即化成最簡二次根式后,被開方數(shù)相同的二次根式叫做同類二次根式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2005•福州)已知:拋物線y=x2-2x-m(m>0)與y軸交于點(diǎn)C,C點(diǎn)關(guān)于拋物線對稱軸的對稱點(diǎn)為C′點(diǎn).
(1)求C點(diǎn),C′點(diǎn)的坐標(biāo)(可用含m的代數(shù)式表示);
(2)如果點(diǎn)Q在拋物線的對稱軸上,點(diǎn)P在拋物線上,以點(diǎn)C,C′,P,Q為頂點(diǎn)的四邊形是平行四邊形,求Q點(diǎn)和P點(diǎn)的坐標(biāo)(可用含m的代數(shù)式表示);
(3)在(2)的條件下,求出平行四邊形的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年福建省泉州市晉江市初中學(xué)業(yè)質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:解答題

(2005•福州)已知:拋物線y=x2-2x-m(m>0)與y軸交于點(diǎn)C,C點(diǎn)關(guān)于拋物線對稱軸的對稱點(diǎn)為C′點(diǎn).
(1)求C點(diǎn),C′點(diǎn)的坐標(biāo)(可用含m的代數(shù)式表示);
(2)如果點(diǎn)Q在拋物線的對稱軸上,點(diǎn)P在拋物線上,以點(diǎn)C,C′,P,Q為頂點(diǎn)的四邊形是平行四邊形,求Q點(diǎn)和P點(diǎn)的坐標(biāo)(可用含m的代數(shù)式表示);
(3)在(2)的條件下,求出平行四邊形的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年福建省福州市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•福州)已知:拋物線y=x2-2x-m(m>0)與y軸交于點(diǎn)C,C點(diǎn)關(guān)于拋物線對稱軸的對稱點(diǎn)為C′點(diǎn).
(1)求C點(diǎn),C′點(diǎn)的坐標(biāo)(可用含m的代數(shù)式表示);
(2)如果點(diǎn)Q在拋物線的對稱軸上,點(diǎn)P在拋物線上,以點(diǎn)C,C′,P,Q為頂點(diǎn)的四邊形是平行四邊形,求Q點(diǎn)和P點(diǎn)的坐標(biāo)(可用含m的代數(shù)式表示);
(3)在(2)的條件下,求出平行四邊形的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年福建省福州市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2005•福州)已知:拋物線y=x2-2x-m(m>0)與y軸交于點(diǎn)C,C點(diǎn)關(guān)于拋物線對稱軸的對稱點(diǎn)為C′點(diǎn).
(1)求C點(diǎn),C′點(diǎn)的坐標(biāo)(可用含m的代數(shù)式表示);
(2)如果點(diǎn)Q在拋物線的對稱軸上,點(diǎn)P在拋物線上,以點(diǎn)C,C′,P,Q為頂點(diǎn)的四邊形是平行四邊形,求Q點(diǎn)和P點(diǎn)的坐標(biāo)(可用含m的代數(shù)式表示);
(3)在(2)的條件下,求出平行四邊形的周長.

查看答案和解析>>

同步練習(xí)冊答案