(2007·黑龍江牡丹江)如下圖,已知ABCD中,E是AB邊的中點(diǎn),DE交AC與點(diǎn)F,AC、DE把ABCD分成的四部分的面積分別為,下面結(jié)論:

①只有一對(duì)相似三角形;

②EF∶ED=1∶2;

其中正確的結(jié)論是

[  ]

A.①③
B.③
C.①
D.①②
答案:B
解析:

ABCD中,AECD,∴△AEF∽△CDF;另外,易證△ABC≌△CDA,也是相似的一種特殊情況,∴圖中有兩對(duì)相似三角形.因此,結(jié)論①錯(cuò)誤.

由△AEF∽△CDF,得EFFD=AECD=AEAB=12,∴EFED=13.因此,結(jié)論②錯(cuò)誤.

由△AEF∽△CDF,得

設(shè),則,

由△ABC≌△CDA,得,∴

因此,.可見(jiàn),結(jié)論③正確.

綜上可知,正確的結(jié)論只有③.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2007•黑龍江)如圖,點(diǎn)A為x軸負(fù)半軸上一點(diǎn),點(diǎn)B為x軸正半軸上一點(diǎn),OA,OB(OA<OB)的長(zhǎng)分別是關(guān)于x的一元二次方程x2-4mx+m2+2=0的兩根,C(0,3),且S△ABC=6
(1)求∠ABC的度數(shù);
(2)過(guò)點(diǎn)C作CD⊥AC交x軸于點(diǎn)D,求點(diǎn)D的坐標(biāo);
(3)在第(2)問(wèn)的條件下,y軸上是否存在點(diǎn)P,使∠PBA=∠ACB?若存在,請(qǐng)直接寫(xiě)出直線PD的解析式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年黑龍江省牡丹江市中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2007•黑龍江)如圖,點(diǎn)A為x軸負(fù)半軸上一點(diǎn),點(diǎn)B為x軸正半軸上一點(diǎn),OA,OB(OA<OB)的長(zhǎng)分別是關(guān)于x的一元二次方程x2-4mx+m2+2=0的兩根,C(0,3),且S△ABC=6
(1)求∠ABC的度數(shù);
(2)過(guò)點(diǎn)C作CD⊥AC交x軸于點(diǎn)D,求點(diǎn)D的坐標(biāo);
(3)在第(2)問(wèn)的條件下,y軸上是否存在點(diǎn)P,使∠PBA=∠ACB?若存在,請(qǐng)直接寫(xiě)出直線PD的解析式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年黑龍江省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•黑龍江)如圖,點(diǎn)A為x軸負(fù)半軸上一點(diǎn),點(diǎn)B為x軸正半軸上一點(diǎn),OA,OB(OA<OB)的長(zhǎng)分別是關(guān)于x的一元二次方程x2-4mx+m2+2=0的兩根,C(0,3),且S△ABC=6
(1)求∠ABC的度數(shù);
(2)過(guò)點(diǎn)C作CD⊥AC交x軸于點(diǎn)D,求點(diǎn)D的坐標(biāo);
(3)在第(2)問(wèn)的條件下,y軸上是否存在點(diǎn)P,使∠PBA=∠ACB?若存在,請(qǐng)直接寫(xiě)出直線PD的解析式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年黑龍江省中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2007•黑龍江)拋物線y=x2+bx+3經(jīng)過(guò)點(diǎn)(3,0),則b的值為   

查看答案和解析>>

同步練習(xí)冊(cè)答案