【題目】(11·湖州)如圖,已知拋物線經(jīng)過點(diǎn)(0,-3),請你確定一個(gè)
b的值,使該拋物線與x軸的一個(gè)交點(diǎn)在(1,0)和(3,0)之間。你確定的b的值是 ▲ 。
【答案】如(答案不唯一)
【解析】把(0,-3)代入拋物線的解析式求出c的值,在(1,0)和(3,0)之間取一個(gè)點(diǎn),分別把x=1和x=3它的坐標(biāo)代入解析式即可得出不等式組,求出答案即可.
解:把(0,-3)代入拋物線的解析式得:c=-3,
∴y=x2+bx-3,
∵使該拋物線與x軸的一個(gè)交點(diǎn)在(1,0)和(3,0)之間,
∴把x=1代入y=x2+bx-3得:y=1+b-3<0
把x=3代入y=x2+bx-3得:y=9+3b-3>0,
∴-2<b<2,
即在-2<b<2范圍內(nèi)的任何一個(gè)數(shù)都符合,
故答案為:在-2<b<2范圍內(nèi)的任何一個(gè)數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A、D、C、F在同一條直線上,AB=DE,BC=EF,要使△ABC≌△DEF,還需要添加一個(gè)條件是( 。
A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF ; D. ∠A=∠EDF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm,點(diǎn)P在線段AB上以1cm/s的速度由點(diǎn)A向點(diǎn)B運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段BD上由點(diǎn)B向點(diǎn)D運(yùn)動(dòng),他們的運(yùn)動(dòng)時(shí)間為t(s).
(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,當(dāng)t=1時(shí),△ACP與△BPQ是否全等,請說明理由
(2)判斷此時(shí)線段PC和線段PQ的關(guān)系,并說明理由。
(3)如圖(2),將圖(1)中的“AC⊥AB,BD⊥AB”改為“∠CAB=∠DBA=60°”,其他條件不變,設(shè)點(diǎn)Q的運(yùn)動(dòng)速度為x cm/s,是否存在實(shí)數(shù)x,使得△ACP與△BPQ全等?若存在,求出相應(yīng)的x、t的值;若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三角形DEF是三角形ABC經(jīng)過某種變換得到的圖形,點(diǎn)A與點(diǎn)D,點(diǎn)B與點(diǎn)E,點(diǎn)C與點(diǎn)F分別是對應(yīng)點(diǎn),觀察點(diǎn)與點(diǎn)的坐標(biāo)之間的關(guān)系,解答下列問題:
(1)分別寫出點(diǎn)A與點(diǎn)D,點(diǎn)B與點(diǎn)E,點(diǎn)C與點(diǎn)F的坐標(biāo),并說說對應(yīng)點(diǎn)的坐標(biāo)有哪些特征;
(2)若點(diǎn)P(a+3,4-b)與點(diǎn)Q(2a,2b-3)也是通過上述變換得到的對應(yīng)點(diǎn),求a,b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將兩塊大小相同的含30°角的直角三角板(∠BAC=∠B1A1C=30°)按圖①的方式放置,固定三角板A1B1C,然后將三角板ABC繞直角頂點(diǎn)C順時(shí)針方向旋轉(zhuǎn)(旋轉(zhuǎn)角小于90°)至圖②所示的位置,AB與A1C交于點(diǎn)E,AC與A1B1交于點(diǎn)F,AB與A1B1交于點(diǎn)O.
(1)求證:△BCE≌△B1CF.
(2)當(dāng)旋轉(zhuǎn)角等于30°時(shí),AB與A1B1垂直嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,AD是BC邊上的高,點(diǎn)E是AC邊的中點(diǎn),點(diǎn)P是AD上的一個(gè)動(dòng)點(diǎn),當(dāng)PC+PE最小時(shí),∠CPE的度數(shù)是( )
A.30°B.45°C.60°D.70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著通訊技術(shù)迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計(jì)了“你最喜歡的溝通方式”調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機(jī)調(diào)查了部分學(xué)生,將統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請結(jié)合圖中所給的信息解答下列問題:
(1)這次統(tǒng)計(jì)共抽查了 名學(xué)生;在扇形統(tǒng)計(jì)圖中,表示“QQ”的扇形圓心角的度數(shù)為 ;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)該校共有1500名學(xué)生,請估計(jì)該校最喜歡用“微信”進(jìn)行溝通的學(xué)生有多少名?
(4)某天甲、乙兩名同學(xué)都想從“微信”、“QQ”、“電話”三種溝通方式中選一種方式與對方聯(lián)系,請用列表或畫樹狀圖的方法求出甲、乙兩名同學(xué)恰好選中同一種溝通方式的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,每個(gè)小正方形的邊形為1個(gè)單位長度,線段AD的兩個(gè)端點(diǎn)都在格點(diǎn)上,點(diǎn)B是線段AD上的格點(diǎn),且BD=1,直線l在格線上.
(1)在直線l的左側(cè)找一格點(diǎn)C,使得△ABC是等腰三角形(AC<AB),畫出△ABC.
(2)將△ABC沿直線l翻折得到△,試畫出△.
(3)畫出點(diǎn)P,使得點(diǎn)P到點(diǎn)D、A’的距離相等,且到邊AB、AA’的距離相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題探究:已知平行四邊形的面積為,是所在直線上一點(diǎn).
如圖:當(dāng)點(diǎn)與重合時(shí),________;
如圖,當(dāng)點(diǎn)與與均不重合時(shí),________;
如圖,當(dāng)點(diǎn)在(或)的延長線時(shí),________.
拓展推廣:如圖,平行四邊形的面積為,、分別為、延長線上兩點(diǎn),連接、、、,求出圖中陰影部分的面積,并說明理由.
實(shí)踐應(yīng)用:如圖是一平行四邊形綠地,、分別平行于、,它們相交于點(diǎn),,,,,現(xiàn)進(jìn)行綠地改造,在綠地內(nèi)部作一個(gè)三角形區(qū)域(連接、、,圖中陰影部分)種植不同的花草,求出三角形區(qū)域的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com