如圖,已知OB是⊙O的半徑,點C、D在⊙O上,∠DCB=40°,則∠OBD= ▲ 度.
50

分析:根據(jù)圓周角定理根據(jù)∠DCB=40°,得出∠BOD=80°,進而得出∠ODB=∠OBD,從而得出答案.
解:∵∠DCB=40°,
∴∠BOD=80°,
∵DO=OB,
∴∠ODB=∠OBD=50°.
故答案為:50.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

(本小題滿分10分)如圖,在平面直角坐標系內(nèi),為原點,點的坐標為經(jīng)過兩點作半徑為軸的負半軸于點

(1)求點的坐標;
(2)過點作的切線交軸于點求直線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,將置于平面直角坐標系中,
其中點為坐標原點,點的坐標為,

(1)求作的外接圓圓心P,并求出P點的坐標;
(2)若⊙P與軸交于點,求點的坐標;
(3)若CD是⊙P的切線,求直線CD的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,⊙O的兩條弦AB、CD互相垂直,垂足為點E,且⊙O的半徑為2,AB與CD兩弦長的平方和等于28,則OE等于(   ).

A. 1              B. 2          C. 1.5    D. 4

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(滿分l4分)如圖,已知AB為⊙O的直徑,弦CD⊥AB,垂足為點H.
(1)求證:AH·AB=AC2;
(2)若過點A的直線與弦CD(不含端點)相交于點E,與⊙O相交于點F,求證:AE·AF=AC2
(3)若過點A的直線與直線CD相交于點P,與⊙O相交于點Q,判斷AP·AQ=AC2是否成立(不必證明).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

若四邊形ABCD是⊙O的內(nèi)接四邊形,且∠A︰∠B︰∠C=1︰3︰8,則∠D的度數(shù)是
A.10°B.30°C.80°D.120°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知在直角ABC中,∠C=900,AC=8㎝,BC=6㎝,則⊿ABC的外接圓半徑長為_________㎝,⊿ABC的內(nèi)切圓半徑長為_________㎝,⊿ABC的外心與內(nèi)心之間的距離為_________㎝。   

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,⊙O的弦CD與直徑AB相交,若∠BAD=50°,則∠ACD=______.[

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知的兩直角邊的長分別為6cm和8cm,則它的外接圓的半徑為__ __cm.

查看答案和解析>>

同步練習冊答案