(2009•泰安)如圖,⊙O的半徑為1,AB是⊙O的一條弦,且AB=,則弦AB所對(duì)圓周角的度數(shù)為( )
A.30°
B.60°
C.30°或150°
D.60°或120°
【答案】分析:連接OA、OB,過O作AB的垂線,通過解直角三角形,易得出∠AOB的度數(shù);由于弦AB所對(duì)的弧有兩段:一段是優(yōu)弧,一段是劣;所以弦AB所對(duì)的圓周角也有兩個(gè),因此要分類求解.
解答:解:如圖,連接OA、OB,過O作AB的垂線;
在Rt△OAC中,OA=1,AC=;
∴∠AOC=60°,∠AOB=120°;
∴∠D=∠AOB=60°;
∵四邊形ADBE是⊙O的內(nèi)接四邊形,
∴∠AEB=180°-∠D=120°;
因此弦AB所對(duì)的圓周角有兩個(gè):60°或120°;
故選D.
點(diǎn)評(píng):本題考查的是圓周角定理、垂徑定理以及圓內(nèi)接四邊形的性質(zhì);注意:弦AB所對(duì)圓周角有兩個(gè),不要漏解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年河南省鄭州市新密市興華公學(xué)九年級(jí)(下)第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•泰安)如圖,△OAB是邊長(zhǎng)為2的等邊三角形,過點(diǎn)A的直線+m與x軸交于點(diǎn)E.
(1)求點(diǎn)E的坐標(biāo);
(2)求過A、O、E三點(diǎn)的拋物線解析式;
(3)若點(diǎn)P是(2)中求出的拋物線AE段上一動(dòng)點(diǎn)(不與A、E重合),設(shè)四邊形OAPE的面積為S,求S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國(guó)中考數(shù)學(xué)試題匯編《反比例函數(shù)》(01)(解析版) 題型:選擇題

(2009•泰安)如圖,雙曲線y=(k>0)經(jīng)過矩形OABC的邊BC的中點(diǎn)E,交AB于點(diǎn)D.若梯形ODBC的面積為3,則雙曲線的解析式為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(02)(解析版) 題型:選擇題

(2009•泰安)如圖,雙曲線y=(k>0)經(jīng)過矩形OABC的邊BC的中點(diǎn)E,交AB于點(diǎn)D.若梯形ODBC的面積為3,則雙曲線的解析式為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年山東省泰安市初中學(xué)業(yè)考試數(shù)學(xué)樣卷(解析版) 題型:選擇題

(2009•泰安)如圖,雙曲線y=(k>0)經(jīng)過矩形OABC的邊BC的中點(diǎn)E,交AB于點(diǎn)D.若梯形ODBC的面積為3,則雙曲線的解析式為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年福建省龍巖市上杭三中九年級(jí)(下)第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•泰安)如圖,△OAB是邊長(zhǎng)為2的等邊三角形,過點(diǎn)A的直線+m與x軸交于點(diǎn)E.
(1)求點(diǎn)E的坐標(biāo);
(2)求過A、O、E三點(diǎn)的拋物線解析式;
(3)若點(diǎn)P是(2)中求出的拋物線AE段上一動(dòng)點(diǎn)(不與A、E重合),設(shè)四邊形OAPE的面積為S,求S的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案