【題目】如圖,一漁船由西往東航行,在A點(diǎn)測(cè)得海島C位于北偏東60°的方向,前進(jìn)20海里到達(dá)B點(diǎn),此時(shí),測(cè)得海島C位于北偏東30°的方向,則海島C到航線(xiàn)AB的距離CD等于海里.
【答案】10
【解析】解:根據(jù)題意可知∠CAD=30°,∠CBD=60°,
∵∠CBD=∠CAD+∠ACB,
∴∠CAD=30°=∠ACB,
∴AB=BC=20海里,
在Rt△CBD中,∠BDC=90°,∠DBC=60°,sin∠DBC= ,
∴sin60°= ,
∴CD=20×sin60°=20× =10 海里,
故答案為:10 .
根據(jù)方向角的定義及余角的性質(zhì)求出∠CAD=30°,∠CBD=60°,再由三角形外角的性質(zhì)得到∠CAD=30°=∠ACB,根據(jù)等角對(duì)等邊得出AB=BC=20,然后解Rt△BCD,求出CD即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列各式:(ab)2=a2b2,(ab)3=a3b3,(ab)4=a4b4…
回答下列三個(gè)問(wèn)題:
(1)驗(yàn)證:(2×)100= ,2100×()100= ;
(2)通過(guò)上述驗(yàn)證,歸納得出:(ab)n= ; (abc)n= .
(3)請(qǐng)應(yīng)用上述性質(zhì)計(jì)算:(﹣0.125)2017×22016×42015.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD 中,點(diǎn)O 是對(duì)角線(xiàn)AC 的中點(diǎn),EF 過(guò)點(diǎn)O,與AD,BC 分別相交于點(diǎn)E,F(xiàn),GH 過(guò)點(diǎn)O,與AB,CD 分別相交于點(diǎn)G,H,連接EG,F(xiàn)G,F(xiàn)H,EH.求證:四邊形EGFH 是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,AE⊥BC,垂足為點(diǎn)E,CE=CD,點(diǎn)F為CE的中點(diǎn),點(diǎn)G為CD上的一點(diǎn),連接DF,EG,AG,∠1=∠2.
(1)若CF=2,AE=3,求BE的長(zhǎng);
(2)求證:∠CEG=∠AGE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用字母表示規(guī)律:
(1)下圖是由一些火柴棒搭成的圖案:
……
② ③
擺第①個(gè)圖案用______根火柴棒,擺第②個(gè)圖案用______根火柴棒,擺第③個(gè)圖案用______根火柴棒;……;按照這種方式擺下去,擺第n個(gè)圖案用____________根火柴棒;
(2)如圖,觀察下列各正方形圖案,每條邊上有個(gè)圓點(diǎn),每個(gè)圖案圓點(diǎn)的總數(shù)是S,按此規(guī)律推斷S與n的關(guān)系式是_______________;
n=2,S=4 n=3,S=8 n=4,S=12
(3)某地出租車(chē)的收費(fèi)標(biāo)準(zhǔn)是:3千米以?xún)?nèi)(包括3千米)為起步價(jià)收5元,3千米以后每千米價(jià)為1.5元;
①若某人乘坐了1.5千米,則應(yīng)收費(fèi)________元;
②若某人乘坐了6千米,則應(yīng)收費(fèi)________元;
③若某人乘坐了x千米(x>3)的路程,則應(yīng)收費(fèi)__________________元;(只列式,不計(jì)算)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB∥CD,定點(diǎn)E,F(xiàn)分別在直線(xiàn)AB,CD上,在平行線(xiàn)AB、CD之間有一動(dòng)點(diǎn)P,滿(mǎn)足0°<∠EPF<180°.
(1)試問(wèn)∠AEP,∠EPF,∠PFC滿(mǎn)足怎樣的數(shù)量關(guān)系?
解:由于點(diǎn)P是平行線(xiàn)AB、CD之間有一動(dòng)點(diǎn),因此需要對(duì)點(diǎn)P的位置進(jìn)行分類(lèi)討論;如圖1,當(dāng)P點(diǎn)在EF的左側(cè)時(shí),∠AEP,∠EPF,∠PFC滿(mǎn)足數(shù)量關(guān)系為______________,如圖2,當(dāng)P點(diǎn)在EF的右側(cè)時(shí),∠AEP,∠EPF,∠PFC滿(mǎn)足數(shù)量關(guān)系為______________。
(2)如圖3,QE,QF分別平分∠PEB和∠PFD,且點(diǎn)P在EF左側(cè).
①若∠EPF=60°,則∠EQF=_______°.
②猜想∠EPF與∠EQF的數(shù)量關(guān)系,并說(shuō)明理由.
③如圖4,若∠BEQ與∠DFQ的角平分線(xiàn)交于點(diǎn)Q1,∠BEQ1與∠DFQ1的角平分線(xiàn)交于點(diǎn)Q2,∠BEQ2與∠DFQ2的角平分線(xiàn)交于點(diǎn)Q3,此次類(lèi)推,則∠EPF與∠EQ2018F滿(mǎn)足怎樣的數(shù)量關(guān)系?(直接寫(xiě)出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)P在△ABC的邊AC上,下列條件中,不能判斷△ABP∽△ACB的是( )
A.∠ABP=∠C
B.∠APB=∠ABC
C.AB2=AP?AC
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD中,點(diǎn)P是CD的中點(diǎn),∠BCD=60°,射線(xiàn)AP交BC的延長(zhǎng)線(xiàn)于點(diǎn)E,射線(xiàn)BP交DE于點(diǎn)K,點(diǎn)O是線(xiàn)段BK的中點(diǎn),作BM⊥AE于點(diǎn)M,作KN⊥AE于點(diǎn)N,連結(jié)MO、NO,以下四個(gè)結(jié)論:①△OMN是等腰三角形;②tan∠OMN= ;③BP=4PK;④PMPA=3PD2 , 其中正確的是( )
A.①②③
B.①②④
C.①③④
D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知點(diǎn)E,F(xiàn),G,H分別是四邊形ABCD各邊AB,BC,CD,DA的中點(diǎn),根據(jù)以下思路可以證明四邊形EFGH是平行四邊形:
(1)如圖2,將圖1中的點(diǎn)C移動(dòng)至與點(diǎn)E重合的位置,F(xiàn),G,H仍是BC,CD,DA的中點(diǎn),求證:四邊形CFGH是平行四邊形;
(2)如圖3,在邊長(zhǎng)為1的小正方形組成的5×5網(wǎng)格中,點(diǎn)A,C,B都在格點(diǎn)上,在格點(diǎn)上畫(huà)出點(diǎn)D,使點(diǎn)C與BC,CD,DA的中點(diǎn)F,G,H組成正方形CFGH;
(3)在(2)條件下求出正方形CFGH的邊長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com