【題目】如圖,邊長(zhǎng)為4個(gè)單位長(zhǎng)度的正方形ABCD的邊AB與等腰直角三角形EFG的斜邊FG重合,EFG以每秒1個(gè)單位長(zhǎng)度的速度沿BC向右勻速運(yùn)動(dòng)(保持FGBC),當(dāng)點(diǎn)E運(yùn)動(dòng)到CD邊上時(shí)EFG停止運(yùn)動(dòng),設(shè)EFG的運(yùn)動(dòng)時(shí)間為t秒,EFG與正方形ABCD重疊部分的面積為S,則S關(guān)于t的函數(shù)大致圖象為(。

A. B. C. D.

【答案】B

【解析】

根據(jù)題意可以求出各段對(duì)應(yīng)的函數(shù)圖象,從而可以判斷哪個(gè)選項(xiàng)中的函數(shù)圖象符合要求,本題得以解決.

由題意可得,

FE=GE,AB=FG=4,∠FEG=90°

FE=GE=2,點(diǎn)EFG的距離為2,

當(dāng)點(diǎn)E從開(kāi)始到點(diǎn)E到邊BC上的過(guò)程中,

S=0≤t≤2),

當(dāng)點(diǎn)EBC邊上到邊FGDC重合時(shí),S==42≤t≤4),

當(dāng)邊FGDC重合到點(diǎn)E到邊DC的過(guò)程中,

S==6-t24≤t≤6),

由上可得,選項(xiàng)B中函數(shù)圖象符合要求,

故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 低碳生活,綠色出行是我們倡導(dǎo)的一種生活方式,有關(guān)部門(mén)抽樣調(diào)查了某單位員工上下班的交通方式,繪制了如下統(tǒng)計(jì)圖:

1)填空:樣本中的總?cè)藬?shù)為 ;開(kāi)私家車(chē)的人數(shù)m= ;扇形統(tǒng)計(jì)圖中騎自行車(chē)所在扇形的圓心角為 度;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)該單位共有2000人,積極踐行這種生活方式,越來(lái)越多的人上下班由開(kāi)私家車(chē)改為騎自行車(chē).若步行,坐公交車(chē)上下班的人數(shù)保持不變,問(wèn)原來(lái)開(kāi)私家車(chē)的人中至少有多少人改為騎自行車(chē),才能使騎自行車(chē)的人數(shù)不低于開(kāi)私家車(chē)的人數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,雙曲線y=x0)經(jīng)過(guò)Rt△ABC的兩個(gè)頂點(diǎn)A,C,∠ABC=90°,AB∥x軸,連接OA,將Rt△ABC沿AC翻折后得到Rt△AB′C,點(diǎn)B′剛好落在線段OA上,連接OC,OC恰好平分OAx軸負(fù)半軸的夾角,若Rt△ABC的面積為2,則k的值為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,點(diǎn)E、F、G分別為邊AB、BCAD上的中點(diǎn),連接AFDE交于點(diǎn)M,連接GM、CG,CGDE交于點(diǎn)N,則結(jié)論①GMCM;②CDDM;四邊形AGCF是平行四邊形;CMD=∠AGM中正確的有( 。﹤(gè).

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在RtABC中,∠C90°,AC3cmBC4cm,點(diǎn)P從點(diǎn)B出發(fā),沿BC向點(diǎn)C勻速運(yùn)動(dòng),速度為lcm/s;同時(shí),點(diǎn)Q從點(diǎn)A出發(fā),沿AB向點(diǎn)B勻速運(yùn)動(dòng),速度為2cm/s;當(dāng)一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng)連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為ts)(0t2.5),解答下列問(wèn)題:

1①BQ   ,BP   ;(用含t的代數(shù)式表示)

設(shè)△PBQ的面積為ycm2),試確定yt的函數(shù)關(guān)系式;

2)在運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻t,使△PBQ的面積為△ABC面積的二分之一?如果存在,求出t的值;不存在,請(qǐng)說(shuō)明理由;

3)在運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻t,使△BPQ為等腰三角形?如果存在,求出t的值;不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】本題滿分8分東營(yíng)市為進(jìn)一步加強(qiáng)和改進(jìn)學(xué)校體育工作,切實(shí)提高學(xué)生體質(zhì)健康水平,決定推進(jìn)一校一球隊(duì)、一級(jí)一專項(xiàng)、一人一技能活動(dòng)計(jì)劃.某校決定對(duì)學(xué)生感興趣的球類項(xiàng)目A:足球, B:籃球, C:排球,D:羽毛球,E:乒乓球進(jìn)行問(wèn)卷調(diào)查,學(xué)生可根據(jù)自己的喜好選修一門(mén),李老師對(duì)某班全班同學(xué)的選課情況進(jìn)行統(tǒng)計(jì)后,制成了兩幅不完整的統(tǒng)計(jì)圖如圖

(1)求出該班學(xué)生人數(shù);

2將統(tǒng)計(jì)圖補(bǔ)充完整;

3若該校共有學(xué)生3500名,請(qǐng)估計(jì)有多少人選修足球?

4該班班委5人中,1人選修籃球,3人選修足球,1人選修排球,李老師要從這5人中任選2人了解他們對(duì)體育選修課的看法,請(qǐng)你用列表或畫(huà)樹(shù)狀圖的方法,求選出的2人恰好1人選修籃球,1人選修足球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB3BC4,將對(duì)角線AC繞對(duì)角線交點(diǎn)O旋轉(zhuǎn),分別交邊AD、BC于點(diǎn)EF,點(diǎn)P是邊DC上的一個(gè)動(dòng)點(diǎn),且保持DPAE,連接PE、PF,設(shè)AEx0x3).

1)填空:PC   ,FC  ;(用含x的代數(shù)式表示)

2)求△PEF面積的最小值;

3)在運(yùn)動(dòng)過(guò)程中,PEPF是否成立?若成立,求出x的值;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校開(kāi)展了以責(zé)任、感恩為主題的班隊(duì)活動(dòng),活動(dòng)結(jié)束后,初三(2)班數(shù)學(xué)興趣小組提出了5個(gè)主要觀點(diǎn)并在本班學(xué)生中進(jìn)行了調(diào)查(要求每位同學(xué)只選自己最認(rèn)可的一項(xiàng)觀點(diǎn)),并制成了如下扇形統(tǒng)計(jì)圖,

1)該班有   人,學(xué)生選擇和諧觀點(diǎn)的有   人,在扇形統(tǒng)計(jì)圖中,和諧觀點(diǎn)所在扇形區(qū)域的圓心角是   度;

2)如果該校有360名初三學(xué)生,利用樣本估計(jì)選擇感恩觀點(diǎn)的初三學(xué)生約有   人;

3)如果數(shù)學(xué)興趣小組在這5個(gè)主要觀點(diǎn)中任選兩項(xiàng)觀點(diǎn)在全校學(xué)生中進(jìn)行調(diào)查,求恰好選到和諧感恩觀點(diǎn)的概率(用樹(shù)狀圖或列表法分析解答).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線的部分圖象如圖所示,與x軸的一個(gè)交點(diǎn)坐標(biāo)為,拋物線的對(duì)稱軸是下列結(jié)論中:

;方程有兩個(gè)不相等的實(shí)數(shù)根;拋物線與x軸的另一個(gè)交點(diǎn)坐標(biāo)為;若點(diǎn)在該拋物線上,則

其中正確的有  

A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案