【題目】中,分別是上的點(diǎn),,交于點(diǎn),若,則四邊形的面積為________

【答案】

【解析】

連接DE,根據(jù)相似三角形的判定定理得出DCE∽△ABC,進(jìn)而判斷出ABCD、DEF∽△ABF,再根據(jù)相似三角形的性質(zhì)即可進(jìn)行解答.

連接DE,

AE=2CE,BD=2CD

=,且夾角∠C為公共角,

∴△DCE∽△ABC,

∴∠CED=CAB,

ABDE,

∴△CDE∽△CBA

== ,

= ,

SABC=3,

SCDE=3×=

且∠EDA=BAD,BED=ABE

∴△DEF∽△ABF,

==,

∴設(shè)SDEF=x,SAEF=SBDF=3x,SABF=9x

x+3x+3x+9x=3

解得:x=

SDEF=,

SDEF+SCDE=+=.

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),P為ABC所在平面上一點(diǎn),且APB=BPC=CPA=120°,則點(diǎn)P叫做ABC的費(fèi)馬點(diǎn).

(1)如果點(diǎn)P為銳角ABC的費(fèi)馬點(diǎn),且ABC=60°.

①求證:ABP∽△BCP;

②若PA=3,PC=4,則PB=

(2)已知銳角ABC,分別以AB、AC為邊向外作正ABE和正ACD,CE和BD 相交于P點(diǎn).如圖(2)

①求CPD的度數(shù);

②求證:P點(diǎn)為ABC的費(fèi)馬點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,OAB 是腰長(zhǎng)為 1 的等腰直角三角形, OAB 90°,延長(zhǎng)OA B1 ,使 AB1 OA ,以OB1 為底,在OAB 外側(cè)作等腰直角三角形OA1B1 ,再延長(zhǎng)OA1 B2 , 使 A1B2 OA1 ,以OB2 為底,在OA1B1 外側(cè)作等腰直角三角形OA2 B2 ,……,按此規(guī)律作等腰直角三角形OAn Bn n 1 , n 為正整數(shù)),回答下列問(wèn)題:

1 A3B3 的長(zhǎng)是_____________;(2OA2020 B2020 的面積是_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,△ABC中,∠ABC45°,CDABDBE平分∠ABC,且BEACE,與CD相交于點(diǎn)F,HBC邊的中點(diǎn),連結(jié)DHBE相交于點(diǎn)G

1)求證:BFAC

2)求證:CEBF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)邊上,,,若添加條件________,則四邊形是矩形;若添加條件________,則四邊形是菱形;若添加條件________,則四邊形是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】商場(chǎng)某種商品平均每天可銷售30件,每件盈利50元。為了盡快減少庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施。經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價(jià)1元,商場(chǎng)平均每天可多售出2件。設(shè)每件商品降價(jià)元。據(jù)此規(guī)律,請(qǐng)回答:

(1)商場(chǎng)日銷售量增加_____件,每件商品盈利_____元(用含的代數(shù)式表示)。

(2)在上述條件不變、銷售正常情況下,每件商品降價(jià)多少元時(shí),商場(chǎng)日盈利可達(dá)到2100元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)到的位置,點(diǎn)分別落在點(diǎn)、處,點(diǎn)軸上,再將繞點(diǎn)順時(shí)針旋轉(zhuǎn)到的位置,點(diǎn)軸上,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)到的位置,點(diǎn)軸上,依次進(jìn)行下去.若點(diǎn),,則點(diǎn)的坐標(biāo)為(

A. B. C. D.

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小華和小峰是兩名自行車愛好者,小華的騎行速度比小峰快兩人準(zhǔn)備在周長(zhǎng)為250米的賽道上進(jìn)行一場(chǎng)比賽若小華在小峰出發(fā)15秒之后再出發(fā),圖中、分別表示兩人騎行路程與時(shí)間的關(guān)系.

小峰的速度為______秒,他出發(fā)______米后,小華才出發(fā);

小華為了能和小峰同時(shí)到達(dá)終點(diǎn),設(shè)計(jì)了兩個(gè)方案,方案一:加快騎行速度;方案二:比預(yù)定時(shí)間提前出發(fā).

______“A“”“B“代表方案一;

若采用方案二,小華必須在小峰出發(fā)多久后開始騎行?求出此時(shí)小華騎行的路程與時(shí)間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊△ABC中,DE分別是邊ABAC上的點(diǎn),且ADCE,則∠ADC+BEA=(  )

A.180°B.170°C.160°D.150°

查看答案和解析>>

同步練習(xí)冊(cè)答案