如圖在△ABC中,BE是它的角平分線,∠C=90°,D在AB邊上,以DB為直徑的半圓O經(jīng)過點(diǎn)E.
(1)試說明:AC是⊙O的切線;
(2)若∠A=30°,⊙O的半徑為4,求圓中陰影部分的面積.

解:(1)∵OB=OE,
∴∠BEO=∠EBO,
∵BE平分∠CBO,
∴∠EBO=∠CBE,
∴∠BEO=∠CBE,
∴EO∥BC,
∵∠C=90°,
∴∠AEO=∠C=90°,
則AC是圓O的切線;

(2)在Rt△AEO中,∠A=30°,OE=4,
∴OA=2OE=8,∠AOE=60°,
根據(jù)勾股定理得:AE==4,
則S陰影=S△AOE-S扇形EOD=×4×4-=8-
分析:(1)由OB=OE,利用等邊對等角得到一對角相等,再由BE為角平分線得到一對角相等,等量代換得到一對內(nèi)錯(cuò)角相等,利用內(nèi)錯(cuò)角相等兩直線平行得到OE與BC平行,利用兩直線平行同位角相等得到OE⊥AC,即可得證;
(2)由∠A的度數(shù)求出∠AOE度數(shù),利用30°直角三角形的性質(zhì)求出OA的長,利用勾股定理求出AE的長,陰影部分面積=直角三角形AOE面積-扇形OED面積,求出即可.
點(diǎn)評:此題考查了切線的判定,以及扇形面積的計(jì)算,涉及的知識有:等腰三角形的性質(zhì),平行線的判定與性質(zhì),含30°直角三角形的性質(zhì),以及勾股定理,熟練掌握切線的判定方法是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

5、如圖在△ABC中,∠ACB=90°,CD是邊AB上的高.那么圖中與∠A相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖在△ABC中,∠ABC=50°,∠ACB=75°,點(diǎn)O是內(nèi)心,則∠BOC的度數(shù)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖在△ABC中,∠A=45°,tanB=3,BC=
10
,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖在△ABC中,AD是BC邊上的高線,CE是AB邊上的中線,DG平分∠CDE,DC=AE,
求證:CG=EG.
證明:∵AD⊥BC
∴∠ADB=90°
∵CE是AB邊上的中線
∴E是AB的中點(diǎn)
∴DE=
1
2
AB
1
2
AB
(直角三角形斜邊上的中線等于斜邊的一半)
又∵AE=
1
2
AB
∴AE=DE
∵AE=CD
∴DE=CD
即△DCE是
等腰
等腰
三角形
∵DG平分∠CDE
∴CG=EG(
等腰三角形三線合一
等腰三角形三線合一

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖在△ABC中,AD垂直平分BC,AD=8,BC=10,E、F是AD上的兩點(diǎn),則圖中陰影部分的面積是
20
20

查看答案和解析>>

同步練習(xí)冊答案