19.如圖,∠AOB=42°,∠BOC=86°,OD為∠AOC的平分線,∠BOD=22°.

分析 首先求得∠AOC的度數(shù),根據(jù)角平分線的定義求得∠AOD,然后根據(jù)∠BOD=∠AOD-∠AOB求解.

解答 解:∵∠AOB=42°,∠BOC=86°,
∴∠AOC=∠AOB+∠BOC=42°+86°=128゜,
∵OD平分∠AOC,
∴∠AOD=$\frac{1}{2}$∠AOC=$\frac{1}{2}$×128°=64°,
∴∠BOD=∠AOD-∠AOB=64゜-42゜=22°.
故答案為:22゜.

點(diǎn)評 本題考查了角度的計(jì)算,正確理解角平分線的定義,求得∠AOD是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.(1)如圖1,△ABC中,∠C=90°,AB的垂直平分線交AC于點(diǎn)D,連接BD.若AC=2,BC=1,則△BCD的周長為3;
(2)O為正方形ABCD的中心,E為CD邊上一點(diǎn),F(xiàn)為AD邊上一點(diǎn),且△EDF的周長等于AD的長.
①在圖2中求作△EDF(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡);
②在圖3中補(bǔ)全圖形,求∠EOF的度數(shù);
③若$\frac{AF}{CE}=\frac{8}{9}$,則$\frac{OF}{OE}$的值為$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

10.觀察一列單項(xiàng)式:-2x,4x2,-8x3,16x4,…,則第5個(gè)單項(xiàng)式是-32x5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.在等邊△ABC的外側(cè)作直線BM,點(diǎn)A關(guān)于直線BM的對稱點(diǎn)為D,連結(jié)AD,CD,設(shè)CD交直線BM于點(diǎn)E.

(1)依題意補(bǔ)全圖1,若∠ABM=30°,求∠BCE的度數(shù);
(2)如圖2,若60°<∠ABM<90°,判斷直線BM和CD相交所成的銳角的度數(shù)是否為定值?若是,求出這個(gè)銳角的度數(shù);若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

14.如圖:已知⊙P的半徑為1,圓心P在拋物線y=$\frac{1}{2}{x}^{2}-1$上運(yùn)動,當(dāng)⊙P與x軸相切時(shí),圓心P的坐標(biāo)為( 。
A.(-2,1)B.(2,1)C.(0,-1)D.(-2,1)或(2,1)或(0,-1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.已知,如圖,在?ABCD中,AC是對角線,AB=AC,點(diǎn)E、F分別是BC、AD的中點(diǎn),連接AE,CF.
(1)四邊形AECF是什么特殊四邊形?證明你的結(jié)論;
(2)當(dāng)△ABC的角滿足什么條件時(shí),四邊形AECF是正方形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

11.四條線段a,b,c,d成比例,其中a=3cm,d=4cm,c=6cm,則b等于(  )
A.8cmB.4.5cmC.1.5cmD.2cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.為緩解“停車難”的問題,某單位擬建造地下停車庫,建筑設(shè)計(jì)師提供了該地下停車庫的設(shè)計(jì)示意圖,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.按規(guī)定,地下停車庫坡道口上方要張貼限高標(biāo)志,以便告知停車人車輛能否安全駛?cè),請你根?jù)該圖計(jì)算CD,CE的長,并標(biāo)明限制高度.
(sin18°≈0.3090,cos18°≈0.9511,tan18°≈0.3249)(精確到0.1m)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.如圖,水平放置的容器內(nèi)原有210毫米高的水,將若干個(gè)球逐一放入該容器中個(gè),毎放入1個(gè)大球水面上升4毫米,每放入一個(gè)小球水面就上升若干毫米,假定放入容器中的所有球完全浸沒水中且水不溢出.
(1)先放入5個(gè)大球,再放入4個(gè)小球,這時(shí)水面上升到了242毫米,那么放1個(gè)小球會使水面上升多少毫米?
(2)僅放入6個(gè)大球后,開始放入小球,且小球個(gè)數(shù)為n.
①若放入了n個(gè)小球后,水并沒有溢出,那么此時(shí)水面的高度是多少毫米?
②限定水面高不超過260毫米,最多能放入幾個(gè)小球?

查看答案和解析>>

同步練習(xí)冊答案