【題目】如圖,已知四邊形ABCD中,AD∥BC,∠A=∠BCD=∠ABD,DE平分∠ADB,下列說法:①AB∥CD;②ED⊥CD;③∠DFC=∠ADC﹣∠DCE;④S△EDF=S△BCF,其中正確的結(jié)論是( 。
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
【答案】D
【解析】試題解析:∵AD∥BC,
∴∠A+∠ABC=180°,∠ADC+∠BCD=180°,
∵∠A=∠BCD,
∴∠ABC=∠ADC,
∵∠A=∠BCD,
∴四邊形ABCD是平行四邊形,
∴AB∥CD,
∵∠A=∠ABD,DE平分∠ADB,
∴DE⊥AB,
∴DE⊥CD,
∵∠A=∠ABD,四邊形ABCD是平行四邊形,
∴AD=BD=BC,
∴∠BDC=∠BCD,
∵AD∥BC,
∴∠ADB=∠DBC,
∵∠ADC=∠ADB+∠BDC,
∴∠ADC=∠DBC+∠BCD,
∴∠ADC-∠DCE=∠DBC+∠BCD-∠DCE=∠DBC+∠BCF,
∵∠DFC=∠DBC+BCF,
∴∠DFC=∠ADC-∠DCE;
∵AB∥CD,
∴△BED的邊BE上的高和△EBC的邊BE上的高相等,
∴由三角形面積公式得:S△BED=S△EBC,
都減去△EFB的面積得:S△EDF=S△BCF,
∴①②③④都正確,
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】地球七大洲的總面積約是149 480 000km2,對(duì)這個(gè)數(shù)據(jù)保留3個(gè)有效數(shù)字可表示為( )
A. 149km2 B. 1.5×108km2 C. 1.49×108km2 D. 1.50×108km2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=kx-k,若y隨x的增大而增大,則圖象經(jīng)過( )
A. 第一二三象限 B. 第一三四象限
C. 第一二四象限 D. 第二三四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩輛汽車同時(shí)分別從A、B兩城沿同一條高速公路勻速駛向C城.已知A、C兩城的距離為360km,B、C兩城的距離為320km,甲車比乙車的速度快10km/h,結(jié)果兩輛車同時(shí)到達(dá)C城.設(shè)乙車的速度為xkm/h.
(1)根據(jù)題意填寫下表:
行駛的路程(km) | 速度(km/h) | 所需時(shí)間(h) | |
甲車 | 360 |
|
|
乙車 | 320 | x |
|
(2)求甲、乙兩車的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,拋物線y=ax2+bx+3與x軸交于點(diǎn)A、B兩點(diǎn)(A在B的左側(cè))與y軸交于C點(diǎn),且OA:OC=1:3,S△ABC=6.
(1)求拋物線的函數(shù)關(guān)系式;
(2)拋物線上是否存在一點(diǎn)D(點(diǎn)C除外),使S△ABD=S△ABC?若存在,求出D點(diǎn)坐標(biāo);若不存在,說明理由.
(3)拋物線上是否存在一點(diǎn)E(點(diǎn)B除外),使S△ACE=S△ABC?若存在,求出E點(diǎn)坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一元二次方程ax2+bx+c=0有一根為0,則下列結(jié)論正確的是( )
A.a=0
B.b=0
C.c=0
D.c≠0
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com