【題目】4836′的余角是_________,補角是_________.

【答案】41°24′ 131°24'

【解析】

根據(jù)和為90度的兩個角互為余角;和為180度的兩個角互為補角解答即可

根據(jù)定義:48°36′的余角=90°﹣48°36′=41°24′;

它的補角=180°﹣48°36′=131°24′.

故答案為:41°24′,131°24′′.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線l1的解析表達式為:y=﹣3x+3,且l1與x軸交于點D,直線l2經(jīng)過點A,B,直線l1 , l2交于點C.

(1)求點D的坐標;
(2)求直線l2的解析表達式;
(3)求△ADC的面積;
(4)在直線l2上存在異于點C的另一點P,使得△ADP與△ADC的面積相等,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P( x, y1)與Q (x, y2)分別是兩個函數(shù)圖象C1C2上的任一點. 當a x b時,有-1 ≤ y1 - y2 ≤ 1成立,則稱這兩個函數(shù)在a x b上是“相鄰函數(shù)”,否則稱它們在a x b上是“非相鄰函數(shù)”.

例如,點P(x, y1)與Q (x, y2)分別是兩個函數(shù)y = 3x+1與y = 2x - 1圖象上的任一點,當-3 ≤ x ≤ -1時,y1 - y2 = (3x + 1) - (2x - 1) = x + 2,通過構造函數(shù)y = x + 2并研究該函數(shù)在-3 ≤ x ≤ -1上的性質,得到該函數(shù)值的范圍是-1 ≤ y ≤ 1,所以-1 ≤ y1 - y2 ≤ 1成立,因此這兩個函數(shù)在-3 ≤ x ≤ -1上是“相鄰函數(shù)”.

(1)判斷函數(shù)y = 3x + 2與y = 2x + 1在-2 ≤ x≤ 0上是否為“相鄰函數(shù)”,說明理由;

(2)若函數(shù)y = x2 - xy = x - a在0 ≤ x ≤ 2上是“相鄰函數(shù)”,求a的取值范圍;

(3)若函數(shù)y =y =-2x + 4在1 ≤ x ≤ 2上是“相鄰函數(shù)”,直接寫出a的最大值與最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知方程5x2+mx-6=0的一個根是x=3,則m的值為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,其對稱軸為x=1,且過點(﹣3,0).下列說法:①abc02ab=0;4a+2b+c0;④若(﹣5,y1),(,y2)是拋物線上兩點,則y1y2

其中說法正確的是( 。

A. ①② B. ②③ C. ①②④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD的對角線AC、BD相交于點O,AECF

(1)求證:BOE≌△DOF;

(2)若BDEF,連接DE、BF,判斷四邊形EBFD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,AD=3,以頂點D為圓心作半徑為r的圓,若點A,B,C中至少有一個點在圓內,且至少有一個點在圓外,則r的值可以是下列選項中的( )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】多項式3x|m|y2+(m+2)x2y﹣1是四次三項式,則m的值為

查看答案和解析>>

同步練習冊答案