精英家教網(wǎng)如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點O,過點O作EF∥BC交AB于E,交AC于F,過點O作OD⊥AC于D.下列四個結(jié)論:
①∠BOC=90°+
1
2
∠A;
②EF是△ABC的中位線;
③設(shè)OD=m,AE+AF=n,則S△AEF=
1
2
mn;
④以E為圓心、BE為半徑的圓與以F為圓心、CF為半徑的圓外切.其中正確的結(jié)論是
 
(填序號).
分析:由在△ABC中,∠ABC和∠ACB的平分線相交于點O,根據(jù)角平分線的定義與三角形內(nèi)角和定理,即可求得①∠BOC=90°+
1
2
∠A正確;由角平分線定理與三角形面積的求解方法,即可求得③設(shè)OD=m,AE+AF=n,則S△AEF=
1
2
mn正確;又由在△ABC中,∠ABC和∠ACB的平分線相交于點O,過點O作EF∥BC交AB于E,可判定△BEO與△CFO是等腰三角形,根據(jù)兩圓位置關(guān)系與圓心距d,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系,即可求得④正確.
解答:精英家教網(wǎng)解:∵在△ABC中,∠ABC和∠ACB的平分線相交于點O,
∴∠OBC=
1
2
∠ABC,∠OCB=
1
2
∠ACB,∠A+∠ABC+∠ACB=180°,
∴∠OBC+∠OCB=90°-
1
2
∠A,
∴∠BOC=180°-(∠OBC+∠OCB)=90°+
1
2
∠A;故①正確;
過點O作OM⊥AB于M,作ON⊥BC于N,連接OA,
∵在△ABC中,∠ABC和∠ACB的平分線相交于點O,
∴ON=OD=OM=m,
∴S△AEF=S△AOE+S△AOF=
1
2
AE•OM+
1
2
AF•OD=
1
2
OD•(AE+AF)=
1
2
mn;故③正確;
∵在△ABC中,∠ABC和∠ACB的平分線相交于點O,
∴∠EBO=∠OBC,∠FCO=∠OCB,
∵EF∥BC,
∴∠EOB=∠OBC,∠FOC=∠OCB,
∴∠EBO=∠EOB,∠FOC=∠FCO,
∴EB=EO,F(xiàn)O=FC,
∴EF=EO+FO=BE+CF,
∴以E為圓心、BE為半徑的圓與以F為圓心、CF為半徑的圓外切,故④正確.
∴其中正確的結(jié)論是①③④.
故答案為:①③④.
點評:此題考查了角平分線的定義與性質(zhì),等腰三角形的判定與性質(zhì),以及圓與圓的位置關(guān)系.此題難度適中,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊答案