已知二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸交于A(x1,0)、B(x2,0)(x1<x2)兩點(diǎn),與y軸交于點(diǎn)C,x1,x2是方程x2+4x﹣5=0的兩根.

(1)若拋物線的頂點(diǎn)為D,求S△ABC:S△ACD的值;

(2)若∠ADC=90°,求二次函數(shù)的解析式.

考點(diǎn):

二次函數(shù)綜合題.

分析:

(1)首先解一元二次方程,求出點(diǎn)A、點(diǎn)B的坐標(biāo),得到含有字母a的拋物線的交點(diǎn)式;然后分別用含字母a的代數(shù)式表示出△ABC與△ACD的面積,最后得出結(jié)論;

(2)在Rt△ACD中,利用勾股定理,列出一元二次方程,求出未知系數(shù)a,得出拋物線的解析式.

解答:

解:(1)解方程x2+4x﹣5=0,得x=﹣5或x=1,

由于x1<x2,則有x1=﹣5,x2=1,∴A(﹣5,0),B(1,0).

拋物線的解析式為:y=a(x+5)(x﹣1)(a>0),

∴對稱軸為直線x=2,頂點(diǎn)D的坐標(biāo)為(﹣2,﹣9a),

令x=0,得y=﹣5a,

∴C點(diǎn)的坐標(biāo)為(0,﹣5a).

依題意畫出圖形,如右圖所示,則OA=5,OB=1,AB=6,OC=5a,

過點(diǎn)D作DE⊥y軸于點(diǎn)E,則DE=2,OE=9a,CE=OE﹣OC=4a.

S△ACD=S梯形ADEO﹣S△CDE﹣S△AOC

=(DE+OA)•OE﹣DE•CE﹣OA•OC

=(2+5)•9a﹣×2×4a﹣×5×5a

=15a,

而S△ABC=AB•OC=×6×5a=15a,

∴S△ABC:S△ACD=15a:15a=1;

(2)如解答圖所示,

在Rt△DCE中,由勾股定理得:CD2=DE2+CE2=4+16a2,

在Rt△AOC中,由勾股定理得:AC2=OA2+OC2=25+25a2,

設(shè)對稱軸x=2與x軸交于點(diǎn)F,則AF=3,

在Rt△ADF中,由勾股定理得:AD2=AF2+DF2=9+81a2

∵∠ADC=90°,∴△ACD為直角三角形,

由勾股定理得:AD2+CD2=AC2,

即(9+81a2)+(4+16a2)=25+25a2,化簡得:a2=,

∵a>0,

∴a=,

∴拋物線的解析式為:y=(x+5)(x﹣1)=x2+x﹣

點(diǎn)評:

本題考查了二次函數(shù)的圖象與性質(zhì)、一元二次方程的解法、直角三角形與勾股定理、幾何圖形面積的計(jì)算等知識點(diǎn),難度不是很大,但涉及的計(jì)算較多,需要仔細(xì)認(rèn)真,避免出錯(cuò).注意第(1)問中求△ACD面積的方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

21、已知二次函數(shù)y=a(x+1)2+c的圖象如圖所示,則函數(shù)y=ax+c的圖象只可能是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)y=ax+bx+c的圖象與x軸交于點(diǎn)A.B,與y軸交于點(diǎn) C.

(1)寫出A. B.C三點(diǎn)的坐標(biāo);(2)求出二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省廣州市海珠區(qū)九年級上學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:選擇題

已知二次函數(shù)y=ax²+bx+c(a≠0)的圖像如圖所示,則下列結(jié)論中正確的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一個(gè)根

C.a+b+c=0          D.當(dāng)x<1時(shí),y隨x的增大而減小

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

已知二次函數(shù)y=ax+bx+c(a≠0,a,b,c為常數(shù)),對稱軸為直線x=1,它的部分自變量與函數(shù)值y的對應(yīng)值如下表,寫出方程ax2+bx+c=0的一個(gè)正數(shù)解的近似值________(精確到0.1).
x-0.1-0.2-0.3-0.4
y=ax2+bx+c-0.58-0.120.380.92

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=ax²+bx+c(c≠0)的圖像如圖4所示,下列說法錯(cuò)誤的是:

(A)圖像關(guān)于直線x=1對稱

(B)函數(shù)y=ax²+bx+c(c ≠0)的最小值是 -4

(C)-1和3是方程ax²+bx+c=0(c ≠0)的兩個(gè)根

(D)當(dāng)x<1時(shí),y隨x的增大而增大

查看答案和解析>>

同步練習(xí)冊答案