【題目】已知每件獎(jiǎng)品價(jià)格相同,每件獎(jiǎng)品價(jià)格相同,老師要網(wǎng)購(gòu)兩種獎(jiǎng)品件,若購(gòu)買獎(jiǎng)品件、獎(jiǎng)品件,則微信錢包內(nèi)的錢會(huì)差元;若購(gòu)買獎(jiǎng)品件、獎(jiǎng)品件,則微信錢包的錢會(huì)剩余元,老師實(shí)際購(gòu)買了獎(jiǎng)品件,獎(jiǎng)品件,則微信錢包內(nèi)的錢會(huì)剩余__________元.
【答案】1610
【解析】
設(shè)A獎(jiǎng)品價(jià)格為x元/個(gè),B獎(jiǎng)品價(jià)格為y元/個(gè),微信錢包金額為z元,根據(jù)題意可得9x+7y=z+230,7x+9y=z-230,從而得到8x+8y=z,x-y=230,從而得到結(jié)論.
設(shè)A獎(jiǎng)品價(jià)格為x元/個(gè),B獎(jiǎng)品價(jià)格為y元/個(gè),微信錢包金額為z元,根據(jù)題意得:
,
由①+②得:16x+16y=2z,即8x+8y=z,則微信錢包金額剛好可以買8個(gè)A產(chǎn)品和8個(gè)B產(chǎn)品,
由①-②得:2x-2y=460,即x-y=230,則A的價(jià)格比B的價(jià)格多230元,
∴x+15y=8x+8y-7(x-y)=z-7=z-1610,
∴微信錢包內(nèi)的錢會(huì)剩余1610元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:在平面直角坐標(biāo)系中,對(duì)于任意兩點(diǎn),,若點(diǎn)滿足,,那么稱點(diǎn)是點(diǎn),的融合點(diǎn).
例如:,,當(dāng)點(diǎn)滿是,時(shí),則點(diǎn)是點(diǎn),的融合點(diǎn),
(1)已知點(diǎn),,,請(qǐng)說明其中一個(gè)點(diǎn)是另外兩個(gè)點(diǎn)的融合點(diǎn).
(2)如圖,點(diǎn),點(diǎn)是直線上任意一點(diǎn),點(diǎn)是點(diǎn),的融合點(diǎn).
①試確定與的關(guān)系式.
②若直線交軸于點(diǎn),當(dāng)為直角三角形時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的弦,OP⊥OA交AB于點(diǎn)P,過點(diǎn)B的直線交OP的延長(zhǎng)線于點(diǎn)C,且CP=CB.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為3,OP=1,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某織布廠有150名工人,為了提高經(jīng)濟(jì)效益,增設(shè)制衣項(xiàng)目,已知每人每天能織布30m,或利用所織布制衣4件,制衣一件需要布1.5m,將布直接出售,每米布可獲利2元,將布制成衣后出售,每件可獲利25元,若每名工人每天只能做一項(xiàng)工作,且不計(jì)其他因素,設(shè)安排x名工人制衣.
(1)一天中制衣所獲利潤(rùn)P是多少(用含x的式子表示);
(2)一天中剩余布所獲利潤(rùn)Q是多少 (用含x的式子表示);.
(3)一天當(dāng)中安排多少名工人制衣時(shí),所獲利潤(rùn)為11806元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫成另一個(gè)式子的平方,如:3+2=(1+)2,善于思考的小明進(jìn)行了以下探索:
設(shè)a+b=(m+n)2(其中a、b、m、n均為整數(shù)),則有a+b=m2+2n2+2mn.
∴a=m2+2n2,b=2mn.這樣小明就找到了一種把部分a+b的式子化為平方式的方法.
請(qǐng)你仿照小明的方法探索并解決下列問題:
(1)當(dāng)a、b、m、n均為正整數(shù)時(shí),若a+b=(m+n)2,用含m、n的式子分別表示a、b,得a= ,b= ;
(2)試著把7+4化成一個(gè)完全平方式.
(3)若a是216的立方根,b是16的平方根,試計(jì)算:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,點(diǎn)E,F分別在邊BC,CD上,且∠EAF=∠CEF=45°.
(1)將△ADF繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△ABG(如圖①),求證:△AEG≌△AEF;
(2)若直線EF與AB,AD的延長(zhǎng)線分別交于點(diǎn)M,N(如圖②),求證:EF2=ME2+NF2;
(3)將正方形改為長(zhǎng)與寬不相等的矩形,若其余條件不變(如圖③),請(qǐng)你直接寫出線段EF,BE,DF之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)分別在的邊上運(yùn)動(dòng)(不與點(diǎn)重合),是的平分線,的延長(zhǎng)線交角的平分線于點(diǎn).
(1)若,求的度數(shù).
(2)若,求的度數(shù).
(3)若,請(qǐng)用含的代數(shù)式表示的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三個(gè)頂點(diǎn)的坐標(biāo)分別為,,,
(1)若將△ABC 向右平移三個(gè)單位長(zhǎng)度得到△A1B1C1,則點(diǎn) A1 的坐標(biāo)為________
(2)若△ABC 與△A2B2C2 關(guān)于原點(diǎn) O 成中心對(duì)稱,則點(diǎn) A2 的坐標(biāo)________;
(3)畫出△ABC 繞原點(diǎn) O 順時(shí)針旋轉(zhuǎn) 90°后的對(duì)應(yīng)圖形△A3B3C3,并寫出 A3 的坐標(biāo)_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“中華人民共和國(guó)道路交通管理?xiàng)l例”規(guī)定:小汽車在城街路上行駛速度不得超過70千米小時(shí),如圖,一輛小汽車在一條城市街路上直道行駛,某一時(shí)刻剛好行駛到路面對(duì)車速檢測(cè)儀A的正前方60米處的C點(diǎn),過了5秒后,測(cè)得小汽車所在的B點(diǎn)與車速檢測(cè)儀A之間的距離為100米.
求BC間的距離;這輛小汽車超速了嗎?請(qǐng)說明理由.
【答案】這輛小汽車沒有超速.
【解析】
(1)根據(jù)勾股定理求出BC的長(zhǎng);
(2)直接求出小汽車的時(shí)速,進(jìn)行比較得出答案.
(1)在Rt△ABC中,AC=60 m,
AB=100 m,且AB為斜邊,根據(jù)勾股定理,得BC=80 m.
(2)這輛小汽車沒有超速.
理由:∵80÷5=16(m/s),
而16 m/s=57.6 km/h,57.6<70,
∴這輛小汽車沒有超速.
【點(diǎn)睛】
考查勾股定理的應(yīng)用,熟練掌握勾股定理是解題的關(guān)鍵.
【題型】解答題
【結(jié)束】
19
【題目】已知:如圖,線段AC和BD相交于點(diǎn)G,連接AB,CD,E是CD上一點(diǎn),F是DG上一點(diǎn),,且.
求證:;若,,求的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com