【題目】如圖,拋物線y=ax2+bx+c與x軸交于點A(﹣1,0),頂點坐標為(1,n),與y軸的交點在(0,2)、(0,3)之間(包含端點).有下列結(jié)論:
①當x>3時,y<0;②3a+b>0;③﹣1≤a≤﹣ ;④ ≤n≤4.
其中正確的是( )

A.①②
B.③④
C.①③
D.①③④

【答案】D
【解析】解:①∵拋物線y=ax2+bx+c與x軸交于點A(﹣1,0),對稱軸直線是x=1,

∴該拋物線與x軸的另一個交點的坐標是(3,0),

∴根據(jù)圖示知,當x>3時,y<0.

故①正確;②根據(jù)圖示知,拋物線開口方向向下,則a<0.

∵對稱軸x= =1,

∴b=﹣2a,

∴3a+b=3a﹣2a=a<0,即3a+b<0.

故②錯誤;③∵拋物線與x軸的兩個交點坐標分別是(﹣1,0),(3,0),

∴﹣1×3=﹣3,

=﹣3,則a=

∵拋物線與y軸的交點在(0,2)、(0,3)之間(包含端點),

∴2≤c≤3,

∴﹣1≤ ,即﹣1≤a≤

故③正確;④根據(jù)題意知,a= , =1,

∴b=﹣2a= ,

∴n=a+b+c= c.

∵2≤c≤3,

≤4, ≤n≤4.

故④正確.

綜上所述,正確的說法有①③④.

所以答案是:D.

【考點精析】通過靈活運用二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系,掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關(guān):對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標:(0,c)即可以解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】計算

1(xy)22x(xy);     2(a1)(a1)(a1)2

3)先化簡,再求值:

(x2y)(x2y)(2x3y4x2y2)÷2xy,其中x=3,.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AC=BC,D是BC上的一點,且滿足∠BAD= ∠C,以AD為直徑的⊙O與AB,AC分別相交于點E,F(xiàn).

(1)求證:直線BC是⊙O的切線;
(2)連接EF,若tan∠AEF= ,AD=4,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形ABCD中,E、F分別為BC、CD的中點,AE與BF相交于點G.

(1)如圖1,求證:AE⊥BF;

(2)如圖2,將△BCF沿BF折疊,得到△BPF,延長FP交BA的延長線于點Q,若AB=4,求QF的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知是邊長為的等邊三角形,動點的速度從點出發(fā),沿線段向點運動.

(1)如圖甲,設(shè)點的運動時間為,那么為何值時,是直角三角形?

(2)若另一動點從點出發(fā),沿射線方向運動,連接于點,如果動點都以的速度同時出發(fā).

①如圖乙,設(shè)運動時間為,那么為何值時,是等腰三角形?

②如圖丙,連接,請你猜想:在點的運動過程中,的面積有什么關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們已經(jīng)知道,有一個內(nèi)角是直角的三角形.其中直角所在的兩條邊叫直角邊,直角所對的邊叫斜邊.數(shù)學家已發(fā)現(xiàn)在一個直角三角形中,兩條直角邊邊長的平方和等于斜邊長的平方.如果設(shè)直角三角形的兩條直角邊長度分別是,斜邊長度是,那么可以用數(shù)學語言表達為:.

1)在圖中,若,,則等于多少;

2)觀察圖,利用面積與代數(shù)恒等式的關(guān)系,試說明的正確性.其中兩個相同的直角三角形邊在一條直線上;

3)如圖③所示,折疊長方形的一邊,使點落在邊的點處,已知,,利用上面的結(jié)論求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=5,BC=3,AC=4,點E,F(xiàn)分別是AB,BC的中點.以下結(jié)論錯誤的是( )

A.△ABC是直角三角形
B.AF是△ABC的中位線
C.EF是△ABC的中位線
D.△BEF的周長為6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:| ﹣2|+3tan30°+22

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列一段文字然后回答下列問題

已知在平面內(nèi)兩點P1x1,y1)、P2x2,y2),其兩點間的距離例如P12,-4)、P27,8),其兩點間的距離,同時,當兩點所在的直線再坐標軸或平行于坐標軸或垂直于坐標軸時,兩點間距離公式可化簡為|x2x1||y2y1|

1)已知A2,4)、B-3,-8),試求AB兩點間的距離____

2)已知M、N在平行于y軸的直線上,點M的縱坐標為4,點N的縱坐標為-1,試求M、N 兩點的距離為

3)已知一個三角形各頂點坐標為D1,6)、E(-2,2)、F4,2),你能判定此三角形的形狀嗎?說明理由.

4)在(3)的條件下,平面直角坐標中,在x軸上找一點P,使PD+PF的長度最短,求出點P的坐標及PD+PF的最短長度.

查看答案和解析>>

同步練習冊答案