【題目】如圖,將長方形ABCD沿著對角線BD折疊,使點C落在C′處,BC′交AD于點E.
(1)若∠DBC=25°,求∠ADC′的度數(shù);
(2)若AB=4,AD=8,求△BDE的面積.
【答案】(1) 40° (2)10
【解析】試題分析:(1)求出∠ADB,求出∠BDC ,根據(jù)折疊求出∠C′DB,代入∠ADC′=∠BDC′-∠ADB即可;
(2)先證BE=DE,然后設DE=x,則BE=x,AE=8-x,在Rt△ABE中,由勾股定理求出x的值,再由三角形的面積公式求出面積的值.
試題解析:(1)∵四邊形ABCD是長方形,
∴AD∥BC,∠ADC=∠C=90°,
∵AD∥BC,
∴∠BDA=∠DBC=25°,
∴∠BDC=90°-25°=65°,
∵沿BD折疊C和C′重合,
∴∠C′DB=∠CDB=65°,
∴∠ADC′=∠BDC′-∠BDA=65°-25°=40°;
(2)由折疊可知,∠CBD=∠EBD,
∵AD∥BC,
∴∠CBD=∠EDB,
∴∠EBD=∠EDB,
∴BE=DE,
設DE=x,則BE=x,AE=8-x,
在Rt△ABE中,由勾股定理得:AB2+AE2=BE2即42+(8-x)2=x2,
解得:x=5,
所以S△BDE=DE×AB=×5×4=10.
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且AD⊥MN于D,BE⊥MN于E.
(1)當直線MN繞點C旋轉(zhuǎn)到圖1的位置時,求證:DE=AD+BE;
(2)當直線MN繞點C旋轉(zhuǎn)到圖2的位置時,求證:DE=AD-BE;
(3)當直線MN繞點C旋轉(zhuǎn)到圖3的位置時,試問DE、AD、BE具有怎樣的等量關(guān)系?請直接寫出這個等量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】判斷下列線段是否成比例,若是,請寫出比例式.
(1)a=3 m,b=5 m,c=4.5 cm,d=7.5 cm;
____________________
(2)a=7 cm,b=4 cm,c=d=2 cm;
____________________
(3)a=1.1 cm,b=2.2 cm,c=3.3 cm,d=5.5 cm.
____________________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平面直角坐標系中,點A的坐標為(2,4),點B的坐標為(2,7) ,直線l經(jīng)過A點且平行于x
軸,直線l上的動點C從A點出發(fā)以每秒4個單位的速度沿直線l運動.若在x軸上有兩點D、E,
連接DB、OB,連接EC、OC,滿足DB=OB,EC=OC,設點C運動時間t秒,
(1) 如圖1,若動點C從A點出發(fā)向左運動,當t=1秒時,
①求線段BC的長和點E的坐標;
②求此時DE與AC的數(shù)量關(guān)系?
(2)探究:動點C在直線l運動,無論t取何值,是否都存在上述(1)②中的數(shù)量關(guān)系? 若存在,請證明;若不存在,請說明理由.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,∠ACB=90°,CD⊥AB,垂足為點D,已知AC=3,BC=4.
(1)線段AD,CD,CD,BD是不是成比例線段?寫出你的理由;
(2)在這個圖形中,能否再找出其他成比例的四條線段?如果能,請至少寫出兩組.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示△ABC在邊長為1個單位的網(wǎng)格中,請根據(jù)下列提示填空:
(1)為了把△ABC平移得到△A′B′C′,可以先將△ABC向 平移_______格,再向 平移_______格.
(2)求出△A’B’C’的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直角坐標系中,A、B、D三點的坐標分別為A(8,0),B(0,4),D(﹣1,0),點C與點B關(guān)于x軸對稱,連接AB、AC.
(1)求過A、B、D三點的拋物線的解析式;
(2)有一動點E從原點O出發(fā),以每秒2個單位的速度向右運動,過點E作x軸的垂線,交拋物線于點P,交線段CA于點M,連接PA、PB,設點E運動的時間為t(0<t<4)秒,求四邊形PBCA的面積S與t的函數(shù)關(guān)系式,并求出四邊形PBCA的最大面積;
(3)拋物線的對稱軸上是否存在一點H,使得△ABH是直角三角形?若存在,請直接寫出點H的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的邊OA=2,OC=6,在OC上取點D將△AOD沿AD翻折,使O點落在AB邊上的E點處,將一個足夠大的直角三角板的頂點P從D點出發(fā)沿線段DA→AB移動,且一直角邊始終經(jīng)過點D,另一直角邊所在直線與直線DE,BC分別交于點M,N.
(1)填空:經(jīng)過A,B,D三點的拋物線的解析式是;
(2)已知點F在(1)中的拋物線的對稱軸上,求點F到點B,D的距離之差的最大值;
(3)如圖1,當點P在線段DA上移動時,是否存在這樣的點M,使△CMN為等腰三角形?若存在,請求出M點坐標;若不存在,請說明理由;
(4)如圖2,當點P在線段AB上移動時,設P點坐標為(x,﹣2),記△DBN的面積為S,請直接寫出S與x之間的函數(shù)關(guān)系式,并求出S隨x增大而增大時所對應的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,下列條件中,能判斷直線L1∥L2的是( )
A. ∠2=∠3 B. ∠l=∠3 C. ∠4+∠5=180 D. ∠2=∠4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com