分析 (1)根據(jù)勾股定理,作B'C'=$\sqrt{{1}^{2}+{3}^{2}}$=$\sqrt{10}$,A'B'=$\sqrt{{3}^{2}+{4}^{2}}$=5,畫出圖形即可;
(2)根據(jù)相似三角形的判定定理,得出△ABC∽△A′B′C′,由相似三角形的性質(zhì)即可得出結(jié)論.
解答 解:(1)如圖所示,△A′B′C′即為所求;
(2)猜想:∠BAC=∠B′A′C′.
證明:∵$\frac{AB}{A′B′}$=$\frac{AC}{A′C′}$=$\frac{\sqrt{5}}{5}$,
$\frac{BC}{B′C′}$=$\frac{\sqrt{2}}{\sqrt{10}}$=$\frac{\sqrt{5}}{5}$,
∴$\frac{AB}{A′B′}$=$\frac{AC}{A′C′}$=$\frac{BC}{B′C′}$,
∴△ABC∽△A′B′C′,
∴∠BAC=∠B′A′C′.
點(diǎn)評 本題考查的是勾股定理的應(yīng)用以及相似三角形的判定與性質(zhì),解題時(shí)注意:在任何一個(gè)直角三角形中,兩條直角邊長的平方之和等于斜邊長的平方,這是解答此題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 變長了1.5米 | B. | 變短了2.5米 | C. | 變長了3.5米 | D. | 變短了3.5米 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com