在△ABC中,∠ABC=30°,AC=2,高線AD的長(zhǎng)為數(shù)學(xué)公式,則BC的長(zhǎng)為________.

4或2
分析:首先利用勾股定理求得DC的長(zhǎng),然后在直角三角形ABD中根據(jù)含30°角的直角三角形的性質(zhì)求得AB的長(zhǎng),然后利用勾股定理求得BD的長(zhǎng)后,相加即可求得BC的長(zhǎng).
解答:解:如圖,∵AC=2,高線AD的長(zhǎng)為
∴CD==1,
∵∠ABC=30°,高線AD的長(zhǎng)為,
∴AB=2,
∴BD==3,
∴BC=BD±CD,3±1=4或2,
故答案為4或2.
點(diǎn)評(píng):本題考查了勾股定理及含30°的直角三角形的性質(zhì),解題的關(guān)鍵是分類討論,漏掉其中的一種情況是常見的錯(cuò)誤.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寧德質(zhì)檢)如圖,在△ABC中,AB=AC=6,點(diǎn)0為AC的中點(diǎn),OE⊥AB于點(diǎn)E,OE=
32
,以點(diǎn)0為圓心,OA為半徑的圓交AB于點(diǎn)F.
(1)求AF的長(zhǎng);
(2)連結(jié)FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•襄陽(yáng))如圖,在△ABC中,AB=AC,AD⊥BC于點(diǎn)D,將△ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn),使AC與AB重合,點(diǎn)D落在點(diǎn)E處,AE的延長(zhǎng)線交CB的延長(zhǎng)線于點(diǎn)M,EB的延長(zhǎng)線交AD的延長(zhǎng)線于點(diǎn)N.
求證:AM=AN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=AC,把△ABC繞著點(diǎn)A旋轉(zhuǎn)至△AB1C1的位置,AB1交BC于點(diǎn)D,B1C1交AC于點(diǎn)E.求證:AD=AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濱湖區(qū)一模)如圖,在△ABC中,AB是⊙O的直徑,∠B=60°,∠C=70°,則∠BOD的度數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•吉林)如圖,在△ABC中,AB=AC,D為邊BC上一點(diǎn),以AB,BD為鄰邊作?ABDE,連接AD,EC.
(1)求證:△ADC≌△ECD;
(2)若BD=CD,求證:四邊形ADCE是矩形.

查看答案和解析>>

同步練習(xí)冊(cè)答案