【題目】如圖,在平面直角坐標(biāo)系中,△ABC三個頂點都在格點上,點A,B,C的坐標(biāo)分別為A(﹣2,3),B(﹣3,1),C(0,1)請解答下列問題:
(1)△ABC與△A1B1C1關(guān)于原點O成中心對稱,畫出△A1B1C1并直接寫出點A的對應(yīng)點A1的坐標(biāo);
(2)畫出△ABC繞點C順時針旋轉(zhuǎn)90°后得到的△A2B2C,并求出線段AC旋轉(zhuǎn)時掃過的面積.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果店11月份購進(jìn)甲、乙兩種水果共花費1700元,其中甲種水果8元/千克,乙種水果18元/千克.12月份,這兩種水果的進(jìn)價上調(diào)為:甲種水果10元/千克,乙種水果20元/千克.
(1)若該店12月份購進(jìn)這兩種水果的數(shù)量與11月份都相同,將多支付貨款300元,求該店11月份購進(jìn)甲、乙兩種水果分別是多少千克?
(2)若12月份將這兩種水果進(jìn)貨總量減少到120千克,設(shè)購進(jìn)甲種水果a千克,需要支付的貨款為w元,求w與a的函數(shù)關(guān)系式;
(3)在(2)的條件下,若甲種水果不超過90千克,則12月份該店需要支付這兩種水果的貨款最少應(yīng)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y1=ax+b的圖象與反比例函數(shù)y2=的圖象相交于A、B兩點,坐標(biāo)分別為(—2,4)、(4,—2).
(1)求兩個函數(shù)的解析式;
(2)求△AOB的面積;
(3)直線AB上是否存在一點P(A除外),使△ABO與以B﹑P、O為頂點的三角形相似?若存在,直接寫出頂點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,對于任意兩點,,如果,則稱與互為“距點”.例如:點,點,由,可得點與互為“距點”.
(1)在點,,中,原點的“距點”是_____(填字母);
(2)已知點,點,過點作平行于軸的直線.
①當(dāng)時,直線上點的“距點”的坐標(biāo)為_____;
②若直線上存在點的“點”,求的取值范圍.
(3)已知點,,,的半徑為,若在線段上存在點,在上存在點,使得點與點互為“距點”,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年第七屆世界軍人運(yùn)動會(7thCISMMilitaryWorldGames)于2019年10月18日至27日在中國武漢舉行,這是中國第一次承辦綜合性國際軍事賽事,也是繼北京奧運(yùn)會后,中國舉辦的規(guī)模最大的國際體育盛會.某射擊運(yùn)動員在一次訓(xùn)練中射擊了10次,成績?nèi)鐖D所示.下列結(jié)論中不正確的有( 。﹤
①眾數(shù)是8;②中位數(shù)是8;③平均數(shù)是8;④方差是1.6.
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為菱形,以AD為直徑作⊙O交AB于點F,連接DB交⊙O于點H,E是BC上的一點,且BE=BF,連接DE.
(1)求證:△DAF≌△DCE.
(2)求證:DE是⊙O的切線.
(3)若BF=2,DH=,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】棱長分別為的兩個正方體如圖放置,點,,在同一直線上,頂點在棱上,點是的中點.一只螞蟻要沿著正方體的表面從點爬到點,它爬行的最短距離是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面四個實驗中,實驗結(jié)果概率最小的是( )
A.如(1)圖,在一次實驗中,老師共做了400次擲圖釘游戲,并記錄了游戲的結(jié)果繪制了下面的折線統(tǒng)計圖,估計出的釘尖朝上的概率
B.如(2)圖,是一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,任意轉(zhuǎn)動轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止時,指針落在藍(lán)色區(qū)域的概率
C.如(3)圖,有一個小球在的地板上自由滾動,地板上的每個格都是邊長為1的正方形,則小球在地板上最終停留在黑色區(qū)域的概率
D.有7張卡片,分別標(biāo)有數(shù)字1,2,3,4,6,8,9,將它們背面朝上洗勻后,從中隨機(jī)抽出一張,抽出標(biāo)有數(shù)字“大于6”的卡片的概率
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:如圖1,五環(huán)圖案內(nèi)寫有5個正整數(shù),請對5個整數(shù)作規(guī)律探索,找出同時滿足以下3個條件的數(shù);①是三個連續(xù)偶數(shù);②是兩個連續(xù)奇數(shù);③滿足.嘗試: 取,如圖2,,5個正整數(shù)滿足要求;
(1)取,能寫出滿足條件的5個正整數(shù)嗎?如果能,寫出的值;如果不能,說明理由.
(2)取,能寫出滿足條件的5個正整數(shù)嗎?如果能,寫出的值;如果不能,說明理由.
(3)猜想: 若5個正整數(shù)能滿足上述三個要求,偶數(shù)具備怎樣的條件?
(4)概括: 現(xiàn)有5個正整數(shù)滿足問題中的三個條件,請用含的代數(shù)式表示(設(shè)為正整數(shù)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com