如圖(1),已知正方形ABCD在直線MN的上方,BC在直線MN上,EBC上一點(diǎn),以AE為邊在直線MN的上方作正方形AEFG

(1)連接GD,求證:△ADG≌△ABE;

(2)連接FC,觀察并猜測(cè)∠FCN的度數(shù),并說明理由;

(3)如圖(2),將圖(1)中正方形ABCD改為矩形ABCD,ABaBCb(a、b為常數(shù)),E是線段BC上一動(dòng)點(diǎn)(不含端點(diǎn)B、C),以AE為邊在直線MN的上方作矩形AEFG,使頂點(diǎn)G恰好落在射線CD上.判斷當(dāng)點(diǎn)EBC運(yùn)動(dòng)時(shí),∠FCN的大小是否總保持不變,若∠FCN的大小不變,請(qǐng)用含a、b的代數(shù)式表示tanFCN的值;若∠FCN的大小發(fā)生改變,請(qǐng)舉例說明.

答案:
解析:

  (1)∵四邊形ABCD和四邊形AEFG是正方形

  ∴ABAD,AEAG,∠BAD=∠EAG=90o

  ∴∠BAE+∠EAD=∠DAG+∠EAD

  ∴∠BAE=∠DAG

  ∴△BAE≌△DAG  2分

  (2)∠FCN=45o  1分

  理由是:作FHMNH

  ∵∠AEF=∠ABE=90o

  ∴∠BAE+∠AEB=90o,∠FEH+∠AEB=90o

  ∴∠FEH=∠BAE

  又∵AEEF,∠EHF=∠EBA=90o

  ∴△EFH≌△ABE  2分

  ∴FHBE,EHABBC,∴CHBEFH

  ∵∠FHC=90o,∴∠FCH=45o  1分

  (3)當(dāng)點(diǎn)EBC運(yùn)動(dòng)時(shí),∠FCN的大小總保持不變  1分

  理由是:作FHMNH

  由已知可得∠EAG=∠BAD=∠AEF=90o

  結(jié)合(1)(2)得∠FEH=∠BAE=∠DAG

  又∵G在射線CD

  ∠GDA=∠EHF=∠EBA=90o

  ∴△EFH≌△GAD,△EFH∽△ABE  2分

  ∴EHADBCb,∴CHBE,

  ∴

  ∴在RtFEH中,tanFCN  2分

  ∴當(dāng)點(diǎn)EBC運(yùn)動(dòng)時(shí),∠FCN的大小總保持不變,tanFCN


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知在直角梯形OABC中,AB∥OC,BC⊥x軸于點(diǎn)C、A(1,1)、B(3,1).動(dòng)點(diǎn)P從O點(diǎn)出發(fā),沿x軸正方向以每秒1個(gè)單位長(zhǎng)度的速度移動(dòng).過P點(diǎn)作PQ垂直于直線OA,垂足為Q.設(shè)P點(diǎn)移動(dòng)的時(shí)間為t秒(精英家教網(wǎng)0<t<4),△OPQ與直角梯形OABC重疊部分的面積為S.
(1)求經(jīng)過O、A、B三點(diǎn)的拋物線解析式;
(2)求S與t的函數(shù)關(guān)系式;
(3)將△OPQ繞著點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,是否存在t,使得△OPQ的頂點(diǎn)O或Q在拋物線上?若存在,直接寫出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知在直角梯形OABC中,AB∥OC,BC⊥x軸于點(diǎn)C.A(1,1)、B(3,1).動(dòng)點(diǎn)P從O點(diǎn)出發(fā),沿x軸正方向以每秒1個(gè)單位長(zhǎng)度的速度移動(dòng).過P點(diǎn)作PQ垂精英家教網(wǎng)直于直線OA,垂足為Q,設(shè)P點(diǎn)移動(dòng)的時(shí)間為t秒(0<t<4),△OPQ與直角梯形OABC重疊部分的面積為S.
(1)求經(jīng)過O、A、B三點(diǎn)的拋物線解析式;
(2)求S與t的函數(shù)關(guān)系式;
(3)將△OPQ繞著點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,是否存t,使得△OPQ的頂點(diǎn)O或Q在拋物線上?若存在,直接寫出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知直線l的解析式為y=-
34
x+6
,并且與x軸、y精英家教網(wǎng)軸分別交于點(diǎn)A、B.
(1)求A、B兩點(diǎn)的坐標(biāo).
(2)一個(gè)半徑為1的動(dòng)圓⊙P (起始時(shí)圓心P在原點(diǎn)O處),以4個(gè)單位/秒的速度沿x軸正方向運(yùn)動(dòng),問經(jīng)過多長(zhǎng)時(shí)間與直線l相切.
(3)若在圓開始運(yùn)動(dòng)的同時(shí),一動(dòng)點(diǎn)Q從B出發(fā),沿BA方向以5個(gè)單位/秒的速度運(yùn)動(dòng),在整個(gè)運(yùn)動(dòng)過程中,問經(jīng)過多長(zhǎng)時(shí)間直線PQ經(jīng)過△AOB的重心M?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知直線AB過點(diǎn)C(1,2),且與x軸、y軸分別交于點(diǎn)A、B,CD⊥x軸于D,CE⊥y軸于E,CF交y軸于G,交x軸于F.(F在原點(diǎn)O的左側(cè))
(1)當(dāng)直線AB的位置正好使得△ACD≌△CBE時(shí),求A點(diǎn)的坐標(biāo)及直線AB的解析式.
(2)若S四邊形ODCE=S△CDF,當(dāng)直線AB的位置正好使得FC⊥AB時(shí),求A點(diǎn)的坐標(biāo)及BC的長(zhǎng).
(3)在(2)成立的前提下,將△FOG延y軸對(duì)折得△F′O′G′(對(duì)折后F、O、G的對(duì)應(yīng)點(diǎn)分別為F′、O′、G′),將△F′O′G′沿x軸正方向精英家教網(wǎng)平移,設(shè)平移過程中△F′O′G′與四邊形ODCE重疊部分面積為y,OO′的長(zhǎng)為x(0≤x≤1),求y與x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖(1)已知,矩形ABDC的邊AC=3,對(duì)角線長(zhǎng)為5,將矩形ABDC置于直角坐系內(nèi),點(diǎn)D與原點(diǎn)O重合.且反比例函數(shù)y=
k
x
的圖象的一個(gè)分支位于第一象限.
(1)求點(diǎn)A的坐標(biāo);
(2)若矩形ABDC從圖(1)的位置開始沿x軸的正方向移動(dòng),每秒移動(dòng)1個(gè)單位,1秒后點(diǎn)A剛好落在反比例函數(shù)y=
k
x
的圖象的圖象上,求k的值;
(3)矩形ABCD繼續(xù)向x軸的正方向移動(dòng),AB、AC與反比例函數(shù)圖象分別交于P、Q如圖(2),設(shè)移動(dòng)的總時(shí)間為t(1<t<5),分別寫出△BPD的面積S1、△DCQ的面積S2與t的函數(shù)關(guān)系式;
(4)在(3)的情況下,當(dāng)t為何值時(shí),S2=
10
7
S1?

查看答案和解析>>

同步練習(xí)冊(cè)答案