【題目】如圖1,△ABC是等腰直角三角形,∠BAC= 90°,AB=AC,四邊形ADEF是正方形,點(diǎn)B、C分別在邊AD、AF上,此時(shí)BD=CF,BD⊥CF成立.
(1)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)θ(0°<θ<90°)時(shí),如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.
(2)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖3,延長DB交CF于點(diǎn)H.
①求證:BD⊥CF;
②當(dāng)AB=2,AD=3時(shí),求線段DH的長.
【答案】(1)BD=CF成立,理由詳見解析;(2)①詳見解析;②.
【解析】
試題分析:(1)先用“SAS”證明△CAF≌△BAD,再用全等三角形的性質(zhì)即可得BD=CF成立;(2)利用△HFN與△AND的內(nèi)角和以及它們的等角,得到∠NHF=90°,即可得①的結(jié)論;(3)連接DF,延長AB,與DF交于點(diǎn)M,利用△BMD∽△FHD求解.
試題解析:(l)解:BD=CF成立.
證明:∵AC=AB,∠CAF=∠BAD=θ;AF=AD,△ABD≌△ACF,∴BD=CF.
(2)①證明:由(1)得,△ABD≌△ACF,∴∠HFN=∠ADN,
在△HFN與△ADN中,∵∠HFN=∠AND,∠HNF=∠AND,∴∠NHF=∠NAD=90°,
∴HD⊥HF,即BD⊥CF.
②解:如圖,連接DF,延長AB,與DF交于點(diǎn)M.
在△MAD中,∵∠MAD=∠MDA=45°,∴∠BMD=90°.
在Rt△BMD與Rt△FHD中,∵∠MDB=∠HDF,∴△BMD∽△FHD.
∴AB=2,AD=3,四邊形ADEF是正方形,∴MA=MD==3.
∴MB=3-2=1,DB==.
∵=.∴=.
∴DH=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù) y=kx+b與反比例函數(shù) y=(x>0)的圖象交于A(m,6)B(3,n)兩點(diǎn).
(1)求一次函數(shù)的解析式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC,AD⊥BD于點(diǎn)D,DE∥AC交AB于點(diǎn)E,若AB=8,則DE=_______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( )
A. ﹣5(a﹣1)=﹣5a+1 B. a2+a2=a4 C. 3a32a2=6a6 D. (﹣a2)3=﹣a6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列因式分解正確的是( )
A. x2﹣y2=(x﹣y)2 B. a2+a+1=(a+1)2
C. xy﹣x=x(y﹣1) D. 2x+y=2(x+y)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】.如圖1,在矩形ABCD中,BC>AB,∠BAD的平分線AF與BD、BC分別交于點(diǎn)E、F,點(diǎn)O是BD的中點(diǎn),直線OK∥AF,交AD于點(diǎn)K,交BC于點(diǎn)G.
(1)求證:①△DOK≌△BOG;②AB+AK=BG;
(2)若KD=KG,BC=4﹣.
①求KD的長度;
②如圖2,點(diǎn)P是線段KD上的動(dòng)點(diǎn)(不與點(diǎn)D、K重合),PM∥DG交KG于點(diǎn)M,PN∥KG交DG于點(diǎn)N,設(shè)PD=m,當(dāng)S△PMN=時(shí),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1~4,在直角邊分別為3和4的直角三角形中,每多作一條斜邊上的高就增加一個(gè)三角形的內(nèi)切圓,依此類推,圖10中有10個(gè)直角三角形的內(nèi)切圓,它們的面積分別記為S1,S2,S3,…,S10,則S1+S2+S3+…+S10= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com