如圖:已知等邊三角形ABC,D為AC邊上的一動(dòng)點(diǎn),CD=nDA,連線段BD,M為線段BD上一點(diǎn),∠AMD=60°,AM交BC于E.
(1)若n=1,則=______.=______;
(2)若n=2,求證:BM=6DM;
(3)當(dāng)n=______
【答案】分析:(1)CD=nDA,當(dāng)n=1時(shí),CD=DA,據(jù)等邊三角形ABC的三線合一,可以得出∠BDA=90°,由∠AMD=60°,可得∠EAD=30°,
又∠BAC=60°,可得∠BAE=30°,AE為∠BAC的角平分線.依據(jù)三線合一可得BE=EC.容易得AM=2MD,AM=BM.問(wèn)題得到解決.
(2)若n=2,則CD=2DA,△ABC是等邊三角形,∠AMD=60°,可證明△BAD≌△ACE,得AD=CE,CD=BE;作輔助線CF∥BD交AE于F,可得===①,==②,觀察①②的乘積,可得BM、DM的數(shù)量關(guān)系.
(3)由M為BD中點(diǎn),可知BM=MD.由∠AMD=60°,△ABC為等邊三角形,可得△AMD∽△ACE,△BME∽△BCD,由相似三角形對(duì)應(yīng)邊成比例,可得AD=,DC=,運(yùn)用比例的性質(zhì)合理變形,問(wèn)題可求.
解答:(1)解:當(dāng)n=1時(shí),CD=DA,
∵△ABC是等邊三角形,
∴BD⊥AC,∠BAC=60°,
∴∠ADM=90°,
又∵∠AMD=60°,
∴∠MAD=30°,
∴∠BAE=∠BAC-∠MAD=30°,即∠BAE=∠EAD,
∴AE為△ABC的中線,

在△AMD中,MD=AM,(30°角所對(duì)的直角邊等于斜邊的一半)
∵∠BAM=∠ABM=30°,
∴AM=BM,


(2)證明:
∠AMD=∠ABD+∠BAE=60°
∠CAE+∠BAE=60°
∴∠ABD=∠CAE
又∵BA=CA,∠BAD=∠ACE=60°
∴△BAD≌△ACE(ASA)
∴AD=CE∴CD=BE
作CF∥BD交AE于F,
===①,==②,
∴①×②得=,
∴BM=6DM.

(3)解:
∵M(jìn)為BD中點(diǎn),
∴BM=MD,
∵△BAD≌△ACE(ASA)
∴AD=CE
∴CD=BE
∵△AMD∽△ACE,△BME∽△BCD
∴AD=③,DC=④,
③•④得CD=AD,
∴n=
點(diǎn)評(píng):此題為考查三角形中線段的倍數(shù)關(guān)系,相關(guān)知識(shí)點(diǎn)的綜合應(yīng)用能力,解題關(guān)鍵在如何作輔助線.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知等邊三角形ABC中,點(diǎn)D,E,F(xiàn)分別為邊AB,AC,BC的中點(diǎn),M為直線BC上一動(dòng)點(diǎn),△DMN為等邊三角形(點(diǎn)M的位置改變時(shí),△DMN也隨之整體移動(dòng)).
(1)如圖1,當(dāng)點(diǎn)M在點(diǎn)B左側(cè)時(shí),請(qǐng)你判斷EN與MF有怎樣的數(shù)量關(guān)系?點(diǎn)F是否在直線NE上?都請(qǐng)直接寫(xiě)出結(jié)論,不必證明或說(shuō)明理由;
(2)如圖2,當(dāng)點(diǎn)M在BC上時(shí),其它條件不變,(1)的結(jié)論中EN與MF的數(shù)量關(guān)系是否仍然成立?若成立,請(qǐng)利用圖2證明;若不成立,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)M在點(diǎn)C右側(cè)時(shí),請(qǐng)你在圖3中畫(huà)出相應(yīng)的圖形,并判斷(1)的結(jié)論中EN與MF的數(shù)量關(guān)系是否仍然成立?若成立,請(qǐng)直接寫(xiě)出結(jié)論,不必證明或說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖,已知等邊三角形ABC,在AB上取點(diǎn)D,在AC上取點(diǎn)E,使得AD=AE,作等邊三角形PCD,QAE和RAB,求證:P、Q、R是等邊三角形的三個(gè)頂點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知等邊三角形△AEC,以AC為對(duì)角線做正方形ABCD(點(diǎn)B在△AEC內(nèi),點(diǎn)D在△AEC外).連接EB,過(guò)E作EF⊥AB,交AB的延長(zhǎng)線為F.
(1)猜測(cè)直線BE和直線AC的位置關(guān)系,并證明你的猜想.
(2)證明:△BEF∽△ABC,并求出相似比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知等邊三角形△AEC,以AC為對(duì)角線做正方形ABCD(點(diǎn)B在△AEC內(nèi),點(diǎn)D在△AEC外).連接EB,過(guò)E作EF⊥AB,交AB的延長(zhǎng)線為F.請(qǐng)猜測(cè)直線BE和直線AC的位置關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知等邊三角形ABC的邊長(zhǎng)為10,點(diǎn)P、Q分別為邊AB、AC上的一個(gè)動(dòng)點(diǎn),點(diǎn)P從點(diǎn)B出發(fā)以1cm/s的速度向點(diǎn)A運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā)以2cm/s的速度向點(diǎn)A運(yùn)動(dòng),連接PQ,以Q為旋轉(zhuǎn)中心,將線段PQ按逆時(shí)針?lè)较蛐D(zhuǎn)60°得線段QD,若點(diǎn)P、Q同時(shí)出發(fā),則當(dāng)運(yùn)動(dòng)
10
3
10
3
s時(shí),點(diǎn)D恰好落在BC邊上.

查看答案和解析>>

同步練習(xí)冊(cè)答案