【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于二、四象限內(nèi)的A、B兩點(diǎn),與x軸交于C點(diǎn),點(diǎn)A的坐標(biāo)為(- 3,4),點(diǎn)B的坐標(biāo)為(6,n).
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)連接OB,求△AOB 的面積;
(3)在x軸上是否存在點(diǎn)P,使△APC是直角三角形. 若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)反比例函數(shù)的解析式為y=﹣ ; 一次函數(shù)的解析式為y=﹣x+2; (2);(3)存在,滿足條件的P點(diǎn)坐標(biāo)為(﹣3,0)、(﹣,0).
【解析】試題分析:(1)先把代入得到的值,從而確定反比例函數(shù)的解析式為;再利用反比例函數(shù)解析式確定B點(diǎn)坐標(biāo)為,然后運(yùn)用待定系數(shù)法確定所求的一次函數(shù)的解析式為
即可求得.
(3)過(guò)A點(diǎn)作軸于, 交x軸于,則點(diǎn)的坐標(biāo)為;再證明利用相似比計(jì)算出則,所以點(diǎn)的坐標(biāo)為,于是得到滿足條件的P點(diǎn)坐標(biāo).
試題解析:
將代入,得
∴反比例函數(shù)的解析式為;
將代入,得
解得
將和分別代入得,
解得,
∴所求的一次函數(shù)的解析式為
(2)當(dāng)時(shí), 解得:
(3)存在.
過(guò)A點(diǎn)作軸于, 交x軸于,如圖,
點(diǎn)坐標(biāo)為
點(diǎn)的坐標(biāo)為
而
即
點(diǎn)的坐標(biāo)為
∴滿足條件的點(diǎn)坐標(biāo)為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,∠A=∠B=90°,AB=5cm,AD=3cm,BC=2cm,P是AB上一點(diǎn),若以P、A、D為頂點(diǎn)的三角形與△PBC相似,則PA=_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是直經(jīng),D是的中點(diǎn),DE⊥AC交AC的延長(zhǎng)線于E,⊙O的切線BF交AD的延長(zhǎng)線于點(diǎn)F.
(1)求證:DE是⊙O的切線.
(2)試探究AE,AD,AB三者之間的等量關(guān)系.
(3)若DE=3,⊙O的半徑為5,求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=6,點(diǎn)D是BC邊上一動(dòng)點(diǎn)(不與B、C重合),過(guò)點(diǎn)D作DE⊥BC交AB邊于點(diǎn)E,將∠B沿直線DE翻折,點(diǎn)B落在射線BC上的點(diǎn)F處,當(dāng)△AEF為直角三角形時(shí),BD的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A是反比例函數(shù)y= 在第一象限圖象上一點(diǎn),連接OA,過(guò)點(diǎn)A作AB∥x軸(點(diǎn)B在點(diǎn)A右側(cè)),連接OB,若OB平分∠AOX,且點(diǎn)B的坐標(biāo)是(8,4),則k的值是( 。
A.6B.8C.12D.16
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,BD為⊙O的直徑,點(diǎn)A、C在⊙O上并位于BD的兩側(cè),∠ABC=45°,連結(jié)CD、OA并延長(zhǎng)交于點(diǎn)F,過(guò)點(diǎn)C作⊙O的切線交BD延長(zhǎng)線于點(diǎn)E.
(1)求證:∠F=∠ECF;
(2)當(dāng)DF=6,tan∠EBC=,求AF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,將腰CD以D為中心逆時(shí)針旋轉(zhuǎn)90°至DE,連接AE、CE,△ADE的面積為3,則BC的長(zhǎng)為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BD是菱形ABCD的對(duì)角線.
(1)請(qǐng)用直尺和圓規(guī)作AB的垂直平分線EF,垂足為點(diǎn)E,交AD于點(diǎn)F;(不要求寫(xiě)作法,保留作圖痕跡)
(2)在(1)的條件下,連接BF,若∠CBD=75°,求∠DBF的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com