有一座拋物線型拱橋(圖1),其水面寬為18米,拱頂離水面AB的距離為9米.有一貨船要將打包好的一些長方體物品(長、寬、高分別是4米、3米、8米)放在甲板上運(yùn)過拱橋(假設(shè)載貨后船的甲板與水面大致平齊).
(1)求拋物線的解析式.
(2)若貨物堆放方式的正視圖如下(圖2),問船能載貨物通過拱橋嗎?通過計(jì)算說明你的結(jié)論.

(3)若改變貨物的堆放方式(正視圖如圖甲、圖乙).問圖甲和圖乙能否載貨物通過拱橋?假設(shè)此貨船的甲板只能提供寬13米,長18米的置物空間,為了盡可能地多裝這些長方體物品(略去其它因素),你會選用圖甲和圖乙中的哪一種載物方式,為什么?

解:(1)∵水面寬18米,拱頂離水面AB的距離為9米.
∴點(diǎn)A和點(diǎn)B的坐標(biāo)為(-9,0)和(0,9),
設(shè)函數(shù)關(guān)系式為y=ax2+c,


∴y=-x2+9.

(2)當(dāng)x=4時(shí),y≈7.2<8;不能通過.

(3)圖甲:當(dāng)x=2時(shí),y≈8.5>6,
當(dāng)x=6時(shí),y=5>3,
能通過;
圖乙:∵x=2時(shí),y≈8.5>8,
當(dāng)x=6時(shí),y=5>3,
能通過.
當(dāng)甲只能運(yùn)8件物品,而乙能運(yùn)10件物品,所以選用圖乙的載貨方式較好.
分析:(1)設(shè)出函數(shù)的關(guān)系式,分別根據(jù)已知條件求得點(diǎn)A和點(diǎn)B的坐標(biāo)代入函數(shù)解析式求得即可.
(2)將x=4代入函數(shù)關(guān)系式后求得函數(shù)值與8比較即可得到答案;
(3)分別將x=6代入到兩個(gè)圖形中,均能通過,然后根據(jù)兩船的載貨量確定答案即可.
點(diǎn)評:本題考查了二次函數(shù)的應(yīng)用,還結(jié)合了三視圖的知識,綜合考查了學(xué)生們的識圖能力,是一道較好的函數(shù)應(yīng)用題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

有一座拋物線型拱橋(圖1),其水面寬為18米,拱頂離水面AB的距離為9米.有一貨船要將打包好的一些長方體物品(長、寬、高分別是4米、3米、8米)放在甲板上運(yùn)過拱橋(假設(shè)載貨后船的甲板與水面大致平齊).
(1)求拋物線的解析式.
(2)若貨物堆放方式的正視圖如下(圖2),問船能載貨物通過拱橋嗎?通過計(jì)算說明你的結(jié)論.
精英家教網(wǎng)
(3)若改變貨物的堆放方式(正視圖如圖甲、圖乙).問圖甲和圖乙能否載貨物通過拱橋?假設(shè)此貨船的甲板只能提供寬13米,長18米的置物空間,為了盡可能地多裝這些長方體物品(略去其它因素),你會選用圖甲和圖乙中的哪一種載物方式,為什么?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

有一座拋物線型拱橋,其水面寬AB為18米,拱頂O離水面AB的距離OM為8米,貨船在水面精英家教網(wǎng)上的部分的橫斷面是矩形CDEF,如圖建立平面直角坐標(biāo)系.
(1)求此拋物線的解析式;
(2)如果限定矩形的長CD為9米,那么矩形的高DE不能超過多少米,才能使船通過拱橋;
(3)若設(shè)EF=a,請將矩形CDEF的面積S用含a的代數(shù)式表示,并指出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)有一座拋物線型拱橋,正常水位時(shí),橋下水面寬度為20m,拱頂距水面4m.
(1)如圖所示的直角坐標(biāo)系中,求出該拋物線的關(guān)系式.
(2)在正常水位的基礎(chǔ)上,當(dāng)水位上升h(m)時(shí),橋下水面的寬度為d(m),求出將d表示為h的函數(shù)關(guān)系式.
(3)設(shè)正常水位時(shí),橋下的水深為2m,為保證過往船只的順利通過,橋下水面的寬度不得小于18m,求水深超過多少米時(shí)就會影響過往船只在橋下順利航行?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)有一座拋物線型拱橋(如圖),正常水位時(shí)橋下河面寬20m,河面距拱頂4m.
(1)在如圖所示的平面直角坐標(biāo)系中,求出拋物線解析式;
(2)為了保證過往船只順利航行,橋下水面的寬度不得小于18m.求水面在正常水位基礎(chǔ)上漲多少m時(shí),就會影響過往船只?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,有一座拋物線型拱橋,漲潮時(shí)橋內(nèi)水面寬AB為8米,落潮時(shí)水位下降5米,橋內(nèi)水面寬CD為12米.

(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,并求此拋物線的解析式;
(2)如圖2,某種貨船在水面上的部分的橫截面是梯形EFGH,且HE=FG,EF=
2
HE,∠GHE=45°.試問落潮時(shí),能順利通過拱橋的這種貨船在水面上的部分最大高度是多少?

查看答案和解析>>

同步練習(xí)冊答案