如圖所示,已知直線AB和CD相交于點(diǎn)O,∠COE是直角,0F平分∠AOE.∠COF=34°.
(1)圖中互補(bǔ)的角(除直角外)有幾對(duì)?請(qǐng)寫出來.
(2)求∠BOD的度數(shù).
分析:(1)利用補(bǔ)角的意義直接寫出即可;
(2)利用直角和∠COF求得,∠EOF,再利用角平分線的性質(zhì)得出∠AOF的度數(shù),利用角的和與差和對(duì)頂角的性質(zhì)解決問題.
解答:解:(1)∠A0C和∠BOC,∠AOF和∠BOF,∠COF和∠FOD,∠EOB和∠EOA,∠BOD和∠BOC,∠BOD和∠AOD.
(2)∵∠COE是直角,∠COF=34°,
∴∠EOF=90-34=56°,
又∵OF平分∠AOE,
∴∠AOF=∠EOF=56°,
∵∠COF=34°,
∴∠AOC=56-34=22°,
則∠BOD=∠AOC=22°.
點(diǎn)評(píng):此題考查補(bǔ)角的意義,角平分線的性質(zhì),直角的意義,對(duì)頂角的意義以及角的和與差等知識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知直線L過點(diǎn)A(0,1)和B(1,0),P是x軸正半軸上的動(dòng)點(diǎn),OP的垂直平分線交L于點(diǎn)Q,交x軸于點(diǎn)M.
(1)直接寫出直線L的解析式;
(2)設(shè)OP=t,△OPQ的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;并求出當(dāng)0<t<2時(shí),S的最大值;
(3)直線L1過點(diǎn)A且與x軸平行,問在L1上是否存在點(diǎn)C,使得△CPQ是以Q為直角頂點(diǎn)的等腰直角精英家教網(wǎng)三角形?若存在,求出點(diǎn)C的坐標(biāo),并證明;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

4、如圖所示,已知直線a∥b,被直線L所截,如果∠1=69°36′,那么∠2=
69
36
分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知直線AB過點(diǎn)C(1,2),且與x軸、y軸分別交于點(diǎn)A、B,CD⊥x軸于D,CE⊥y軸于E,CF交y軸于G,交x軸于F.(F在原點(diǎn)O的左側(cè))
(1)當(dāng)直線AB的位置正好使得△ACD≌△CBE時(shí),求A點(diǎn)的坐標(biāo)及直線AB的解析式.
(2)若S四邊形ODCE=S△CDF,當(dāng)直線AB的位置正好使得FC⊥AB時(shí),求A點(diǎn)的坐標(biāo)及BC的長(zhǎng).
(3)在(2)成立的前提下,將△FOG延y軸對(duì)折得△F′O′G′(對(duì)折后F、O、G的對(duì)應(yīng)點(diǎn)分別為F′、O′、G′),將△F′O′G′沿x軸正方向精英家教網(wǎng)平移,設(shè)平移過程中△F′O′G′與四邊形ODCE重疊部分面積為y,OO′的長(zhǎng)為x(0≤x≤1),求y與x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知直線y=kx-2經(jīng)過M點(diǎn),求此直線與x軸交點(diǎn)坐標(biāo)和直線與兩坐標(biāo)軸圍成三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示:已知直線y=
1
2
x
與雙曲線y=
k
x
(k>0)
交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4.
(1)求k的值;
(2)過A點(diǎn)作AC⊥x軸于C點(diǎn),求△AOC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案