(2010•武漢模擬)如圖,在矩形ABCD中,AB=2BC,E為CD上一點(diǎn),且AE=AB,M為AE的中點(diǎn).下列結(jié)論:
①DM=DA;②EB平分∠AEC;③S△ABE=S△ADE;④BE2=2AE•EC.其中結(jié)論正確的個(gè)數(shù)是( )

A.1
B.2
C.3
D.4
【答案】分析:①由于DM是直角△ADE斜邊AE上的中線,欲證DM=DA,只需證明AD=AE即可;②在直角△ADE中,由于∠ADE=90°,AD=AE,得出∠DEA=30°,然后分別算出∠AEB與∠CEB的度數(shù)即可;③由于S△ABE=S矩形ABCD,S△ADES矩形ABCD,從而進(jìn)行判斷;④如果設(shè)BC=DA=a,則可用含a的代數(shù)式表示BC、AE、EC的長(zhǎng)度,然后在直角△BCE中運(yùn)用勾股定理算出BE2的值,再算出2AE•EC的值,比較即可.
解答:解:①∵在直角△ADE中,∠ADE=90°,M為AE的中點(diǎn),∴DM=AE,∵AE=AB,AB=2BC=2DA,∴DM=DA,正確;
②在直角△ADE中,∠ADE=90°,AD=AE,∴∠DEA=30°.∵CD∥AB,∴∠EAB=∠DEA=30°,∠CEB=∠ABE.在△EAB中,∠EAB=30°,AE=AB,∴∠AEB=∠ABE=75°,∴∠CEB=75°,∴EB平分∠AEC,正確;
③∵S△ABE=S矩形ABCD,S△ADE<S△ADC=S矩形ABCD,∴S△ABE>S△ADE,錯(cuò)誤;
④在矩形ABCD中,設(shè)BC=DA=a,則AE=AB=DC=2BC=2a,DE=AD=a,∴EC=(2-)a.在直角△BCE中,BE2=BC2+CE2=a2+[(2-)a]2=(8-4)a2,2AE•EC=2×2a×(2-)a=(8-4)a2,正確.
故選C.
點(diǎn)評(píng):本題主要考查了直角三角形、矩形的性質(zhì)以及多邊形的面積,勾股定理.綜合性較強(qiáng),有一定難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2011年山東省濟(jì)寧市曲阜市實(shí)驗(yàn)中學(xué)九年級(jí)數(shù)學(xué)第一次摸底試卷(解析版) 題型:填空題

(2010•武漢模擬)如圖,直線y=kx+b經(jīng)過(guò)A(0,4)和B(-2,0)兩點(diǎn),則不等式組0<kx+b≤-2x的解集為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年湖北省武漢市五月調(diào)考九年級(jí)數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•武漢模擬)如圖,直線y=kx+b經(jīng)過(guò)A(0,4)和B(-2,0)兩點(diǎn),則不等式組0<kx+b≤-2x的解集為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年湖北省武漢市四月調(diào)考九年級(jí)數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•武漢模擬)在平面直角坐標(biāo)系中,直線y=kx向右平移2個(gè)單位后,剛好經(jīng)過(guò)點(diǎn)(0,4),則不等式2x>kx+4的解集為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年湖北省武漢市教育科學(xué)研究院命制中考數(shù)學(xué)模擬試卷(解析版) 題型:填空題

(2010•武漢模擬)如圖,直線y=kx+b經(jīng)過(guò)A(0,4)和B(-2,0)兩點(diǎn),則不等式組0<kx+b≤-2x的解集為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年湖北省武漢市部分學(xué)校3月九年級(jí)聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•武漢模擬)如圖1,已知直線y=x+2與x軸交于點(diǎn)A,交y軸于C、拋物線y=ax2+4ax+b經(jīng)過(guò)A、C兩點(diǎn),拋物線交x軸于另一點(diǎn)B.
(1)求拋物線的解析式;
(2)點(diǎn)Q在拋物線上,且有△AQC和△BQC面積相等,求點(diǎn)Q的坐標(biāo);
(3)如圖2,點(diǎn)P為△AOC外接圓上的中點(diǎn),直線PC交x軸于D,∠EDF=∠ACO.當(dāng)∠EDF繞D旋轉(zhuǎn)時(shí),DE交AC于M,DF交y軸負(fù)半軸于N、問(wèn)CN-CM的值是否發(fā)生變化?若不變,求出其值;若變化,求出變化范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案