精英家教網(wǎng)如圖,已知拋物線與x軸交于點A(-2,0),B(4,0),與y軸交于點C(0,8).
(1)求拋物線的解析式及其頂點D的坐標(biāo);
(2)設(shè)直線CD交x軸于點E.在線段OB的垂直平分線上是否存在點P,使得點P到直線CD的距離等于點P到原點O的距離?如果存在,求出點P的坐標(biāo);如果不存在,請說明理由;
(3)過點B作x軸的垂線,交直線CD于點F,將拋物線沿其對稱軸平移,使拋物線與線段EF總有公共點.試探究:拋物線向上最多可平移多少個單位長度?向下最多可平移多少個單位長度?
分析:(1)由拋物線過A、B、C三點可求出拋物線表達(dá)式;
(2)假設(shè)存在,設(shè)出P點,解出直線CD的解析式,根據(jù)點P到CD的距離等于PO可解出P點坐標(biāo);
(3)應(yīng)分兩種情況:拋物線向上或下平移,設(shè)出解析式,代入點求出平移的單位長度.
解答:解:(1)設(shè)拋物線解析式為y=a(x+2)(x-4).
把C(0,8)代入,得a=-1.
∴y=-x2+2x+8=-(x-1)2+9,精英家教網(wǎng)
頂點D(1,9);(2分)

(2)假設(shè)滿足條件的點P存在.依題意設(shè)P(2,t).
由C(0,8),D(1,9)求得直線CD的解析式為y=x+8,
它與x軸的夾角為45°.
設(shè)OB的中垂線交CD于H,則H(2,10).
則PH=|10-t|,點P到CD的距離為d=
2
2
PH=
2
2
|10-t|

PO=
t2+22
=
t2+4
.(4分)
t2+4
=
2
2
|10-t|

平方并整理得:t2+20t-92=0,解之得t=-10±8
3

∴存在滿足條件的點P,P的坐標(biāo)為(2,-10±8
3
).(6分)

(3)由上求得E(-8,0),F(xiàn)(4,12).
①若拋物線向上平移,可設(shè)解析式為y=-x2+2x+8+m(m>0).
當(dāng)x=-8時,y=-72+m.
當(dāng)x=4時,y=m.
∴-72+m≤0或m≤12.
∴0<m≤72.(8分)
②若拋物線向下平移,可設(shè)解析式為y=-x2+2x+8-m(m>0).
y=-x2+2x+8-m
y=x+8

有-x2+x-m=0.
∴△=1-4m≥0,
∴m≤
1
4

∴向上最多可平移72個單位長,向下最多可平移
1
4
個單位長.(10分)
點評:此題考查待定系數(shù)求拋物線解析式,第二問考查垂直平分線性質(zhì),利用距離相等解題,最后一問考拋物線的平移,要注意已知條件和技巧.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線與x軸交于點A(-2,0),B(4,0),與y軸交于點C(0,8).
(1)求拋物線的解析式及其頂點D的坐標(biāo);
(2)設(shè)直線CD交x軸于點E.在線段OB的垂直平分線上是否存在點P,使得點P到直線CD的距離等于點P到原點O的距離?如果存在,求出點P的坐標(biāo);如果不存在,請說明理由;
(3)點M是直線CD上的一動點,BM交拋物線于N,是否存在點N是線段BM的中點,如果存在,求出點N的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線與x軸交于點A(-1,0),與y軸交于點C(0,3),且對稱軸方程為x=1
(1)求拋物線與x軸的另一個交點B的坐標(biāo);
(2)求拋物線的解析式;
(3)設(shè)拋物線的頂點為D,在其對稱軸的右側(cè)的拋物線上是否存在點P,使得△PDC是等腰三角形?若存在,求出符合條件的點P的坐標(biāo);若不存在,請說明理由;
(4)若點M是拋物線上一點,以B、C、D、M為頂點的四邊形是直角梯形,試求出點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線與x軸交于點A(-1,0),E(3,0),與y軸交于點B,且該精英家教網(wǎng)函數(shù)的最大值是4.
(1)拋物線的頂點坐標(biāo)是(
 
 
);
(2)求該拋物線的解析式和B點的坐標(biāo);
(3)設(shè)拋物線頂點是D,求四邊形AEDB的面積;
(4)若拋物線y=mx2+nx+p與上圖中的拋物線關(guān)于x軸對稱,請直接寫出m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•株洲)如圖,已知拋物線與x軸的一個交點A(1,0),對稱軸是x=-1,則該拋物線與x軸的另一交點坐標(biāo)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線與x軸交于點A(-2,0),B(4,0),與y軸交于點C(0,8).
(1)求拋物線的解析式及其頂點D的坐標(biāo);
(2)設(shè)直線CD交x軸于點E,過點B作x軸的垂線,交直線CD于點F,在坐標(biāo)平面內(nèi)找一點G,使以點G、F、C為頂點的三角形與△COE相似,請直接寫出符合要求的,并在第一象限的點G的坐標(biāo);
(3)將拋物線沿其對稱軸平移,使拋物線與線段EF總有公共點.試探究:拋物線向上最多可平移多少個單位長度?

查看答案和解析>>

同步練習(xí)冊答案