如圖,在⊙O中,半徑OC與弦AB垂直,垂足為E,以O(shè)C為直徑的圓與弦AB的一個交點為F,D是CF延長線與⊙O的交點.若OE=4,OF=6,求⊙O的半徑和CD的長.

 

試題分析:由OE⊥AB得到∠OEF=90°,再根據(jù)圓周角定理由OC為小圓的直徑得到∠OFC=90°,則可證明Rt△OEF∽Rt△OFC,然后利用相似比可計算出CD=9;接著在Rt△OCF中,根據(jù)勾股定理可計算出,由于OF⊥CD,根據(jù)垂徑定理得CF=DF,所以
試題解析:∵OE⊥AB,
∴∠OEF=90°,
∵OC為小圓的直徑,
∴∠OFC=90°,
而∠EOF=∠FOC,
∴Rt△OEF∽Rt△OFC,
∴OE:OF=OF:OC,即4:6=6:CD,
∴CD=9;
在Rt△OCF中,OF=6,OC=9,
,
∵OF⊥CD,
∴CF=DF,
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB為⊙O的弦,OC⊥OA,交AB于點P,且PC=BC.

(1)判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若tan∠A=,BC=8,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB是⊙O的直徑,C,D兩點在⊙O上,若∠BCD=40°,則∠ABD的度數(shù)為   °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,兩個同心圓的圓心為O,兩圓的半徑分別為5,3,其中A,B兩點在大圓上,C,D在小圓上,且∠AOB=∠COD.
(1)求證:AC=BD;
(2)若∠AOB=120°,求線段AC,弧CD,線段BD,弧AB組成的封閉圖形的面積;
(3)若AB與小圓相切,分別求AB,CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如果圓錐的母線長為5cm,底面半徑為2cm,那么這個圓錐的側(cè)面積是(   )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在⊙O中,CD是直徑,弦ABCD,垂足為E,連接BC,若AB=cm,,則圓O的半徑為       cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,⊙O的弦AB=8,M是AB的中點,且OM為3,則⊙O的半徑為         

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在矩形ABCD中,AB=2DA,以點A為圓心,AB為半徑的圓弧交DC于點E,交AD的延長線于點F,設(shè)DA=2,圖中陰影部分的面積為           。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

圓錐的高是4cm,母線長5cm,則其側(cè)面展開圖的面積為( 。
A.30πcm2B.24πcm2C.15πcm2D.18πcm2

查看答案和解析>>

同步練習(xí)冊答案