【題目】已知二次函數(shù)y=ax2的圖象與一次函數(shù)y=mx+4的圖象相交于點(diǎn)A(-2,2)B(n,8)兩點(diǎn).

(1)求二次函數(shù)y=ax2與一次函數(shù)y=mx+4的表達(dá)式;

(2)試判斷AOB的形狀,并說(shuō)明理由.

【答案】(1) y=x2y=x+4;(2)AOB是直角三角形.理由見(jiàn)解析

【解析】

(1)把A(-2,2)代入y=ax2求得a的值,即可得二次函數(shù)的解析式;把A(-2,2)代入y=mx+4求得m的值,即可得一次函數(shù)的解析式;(2)AOB是直角三角形,求得點(diǎn)B的坐標(biāo),根據(jù)勾股定理求得OA2、OB2AB2的值,再根據(jù)勾股定理的逆定理即可判定△AOB的形狀.

(1)y=ax2的圖象經(jīng)過(guò)點(diǎn)(-2,2),2=4a,a=,

∴二次函數(shù)的表達(dá)式為y=x2;

∵一次函數(shù)y=mx+4的圖象經(jīng)過(guò)點(diǎn)(-2,2),2=-2m+4,m=1,

∴一次函數(shù)的表達(dá)式是y=x+4.

(2)AOB是直角三角形.

理由:∵點(diǎn)B(n,8)在一次函數(shù)y=x+4的圖象上,

8=n+4,n=4,

點(diǎn)B坐標(biāo)為(4,8),

OA2=(-2-0)2+(2-0)2=8,OB2=(4-0)2+(8-0)2=80,AB2=(8-2)2+(4+2)2=72,

OA2+AB2=8+72=80=OB2,

AOB為直角三角形,且∠OAB=90°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,ABDE,ACDF,AC=DF下列條件中,不能判斷ABC≌△DEF的是( 。

A. AB=DE B. B=∠E C. EF=BC D. EFBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在半徑為4的⊙O中,CD為直徑,AB⊥CD且過(guò)半徑OD的中點(diǎn),點(diǎn)E為⊙O上一動(dòng)點(diǎn),CF⊥AE于點(diǎn)F.當(dāng)點(diǎn)E從點(diǎn)B出發(fā)順時(shí)針運(yùn)動(dòng)到點(diǎn)D時(shí),點(diǎn)F所經(jīng)過(guò)的路徑長(zhǎng)為( )

A. π B. π C. π D. π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線(xiàn)上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對(duì)應(yīng)值如下表:

x

﹣2

﹣1

0

1

2

y

0

4

6

6

4

從上表可知,下列說(shuō)法正確的個(gè)數(shù)是( )

①拋物線(xiàn)與x軸的一個(gè)交點(diǎn)為(﹣2,0);②拋物線(xiàn)與y軸的交點(diǎn)為(0,6);

③拋物線(xiàn)的對(duì)稱(chēng)軸是x=1;④在對(duì)稱(chēng)軸左側(cè)yx增大而增大.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,abc,b2-4ac,2a+b,a+b+c這四個(gè)式子中,值為正數(shù)的有( )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等腰ABC中,AB=AC,BAC=120°ADBC于點(diǎn)D,點(diǎn)PBA延長(zhǎng)線(xiàn)上一點(diǎn),點(diǎn)O是線(xiàn)段AD上一點(diǎn),OP=OC,下面的結(jié)論: ①∠APO+DCO=30°;②△OPC是等邊三角形;③AC=AO+AP;SABC=S四邊形AOCP其中正確的個(gè)數(shù)是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線(xiàn)ABx軸交于點(diǎn)Am0),與y軸交于點(diǎn)B0,n),且mn滿(mǎn)足:(m+n2+|n6|0

1)求:①m,n的值;②SABO的值;

2DOA延長(zhǎng)線(xiàn)上一動(dòng)點(diǎn),以BD為直角邊作等腰直角BDE,連接EA,求直線(xiàn)EAy軸交點(diǎn)F的坐標(biāo).

3)如圖2,點(diǎn)Ey軸正半軸上一點(diǎn),且∠OAE30°AF平分∠OAE,點(diǎn)M是射線(xiàn)AF上一動(dòng)點(diǎn),點(diǎn)N是線(xiàn)段OA上一動(dòng)點(diǎn),試求OM+MN的最小值(圖1與圖2中點(diǎn)A的坐標(biāo)相同).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中有一個(gè)△ABC,頂點(diǎn)A(﹣1,3),B(2,0),C(﹣3,﹣1).

(1)畫(huà)出△ABC關(guān)于y軸的對(duì)稱(chēng)圖形△A1B1C1(不寫(xiě)畫(huà)法);

點(diǎn)A關(guān)于x軸對(duì)稱(chēng)的點(diǎn)坐標(biāo)為   

點(diǎn)B關(guān)于y軸對(duì)稱(chēng)的點(diǎn)坐標(biāo)為   

點(diǎn)C關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)坐標(biāo)為   

(2)若網(wǎng)格上的每個(gè)小正方形的邊長(zhǎng)為1,則△ABC的面積是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為打造書(shū)香校園,計(jì)劃購(gòu)進(jìn)甲、乙兩種規(guī)格的書(shū)柜放置新購(gòu)進(jìn)的圖書(shū),調(diào)查發(fā)現(xiàn),若購(gòu)買(mǎi)甲種書(shū)柜3個(gè)、乙種書(shū)柜2個(gè),共需資金1020元;若購(gòu)買(mǎi)甲種書(shū)柜4個(gè),乙種書(shū)柜3個(gè),共需資金1440元.

(1)甲、乙兩種書(shū)柜每個(gè)的價(jià)格分別是多少元?

(2)若該校計(jì)劃購(gòu)進(jìn)這兩種規(guī)格的書(shū)柜共20個(gè),其中乙種書(shū)柜的數(shù)量不少于甲種書(shū)柜的數(shù)量,學(xué)校至多能夠提供資金4320元,請(qǐng)?jiān)O(shè)計(jì)幾種購(gòu)買(mǎi)方案供這個(gè)學(xué)校選擇.

查看答案和解析>>

同步練習(xí)冊(cè)答案