(2008•南昌)如圖,拋物線(xiàn)y1=-ax2-ax+1經(jīng)過(guò)點(diǎn)P(-,),且與拋物線(xiàn)y2=ax2-ax-1相交于A(yíng),B兩點(diǎn).
(1)求a值;
(2)設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),觀(guān)察M,N,E,F(xiàn)四點(diǎn)的坐標(biāo),寫(xiě)出一條正確的結(jié)論,并通過(guò)計(jì)算說(shuō)明;
(3)設(shè)A,B兩點(diǎn)的橫坐標(biāo)分別記為xA,xB,若在x軸上有一動(dòng)點(diǎn)Q(x,0),且xA≤x≤xB,過(guò)Q作一條垂直于x軸的直線(xiàn),與兩條拋物線(xiàn)分別交于C,D兩點(diǎn),試問(wèn)當(dāng)x為何值時(shí),線(xiàn)段CD有最大值,其最大值為多少?

【答案】分析:(1)拋物線(xiàn)y1=-ax2-ax+1經(jīng)過(guò)點(diǎn)P(-,),則把P點(diǎn)的坐標(biāo)代入解析式就可以求出A的值.
(2)求出A的值以后,兩個(gè)函數(shù)的解析式就可以求出,在解析式中,令y=0就可以求出函數(shù)與x軸的交點(diǎn)坐標(biāo),得出M,N,E,F(xiàn)四點(diǎn)的坐標(biāo).
(3)線(xiàn)段CD的長(zhǎng)度可以用x表示出來(lái),即y2與y1的差.CD的長(zhǎng)度就可以表示為x的一個(gè)二次函數(shù),求CD的最值,就是求函數(shù)的最值問(wèn)題.
解答:解:(1)∵點(diǎn)在拋物
y1=-ax2-ax+1上,
,(2分)
解得.(3分)

(2)如圖,由(1)知,
∴拋物線(xiàn).(5分)
當(dāng)時(shí),解得x1=-2,x2=1.
∵點(diǎn)M在點(diǎn)N的左邊,
∴xM=-2,xN=1.(6分)
當(dāng)時(shí),解得x3=-1,x4=2.
∵點(diǎn)E在點(diǎn)F的左邊,
∴xE=-1,xF=2.(7分)
∵xM+xF=0,xN+xE=0,
∴點(diǎn)M與點(diǎn)F對(duì)稱(chēng),點(diǎn)N與點(diǎn)E對(duì)稱(chēng).(8分)

(3)∵
∴拋物線(xiàn)y1開(kāi)口向下,拋物線(xiàn)y2開(kāi)口向上.(9分)
根據(jù)題意,得CD=y1-y2=.(11分)
∵xA≤x≤xB,
∴當(dāng)x=0時(shí),CD有最大值2.(12分)
點(diǎn)評(píng):本題主要考查了函數(shù)解析式與圖象的關(guān)系,在函數(shù)圖象上的點(diǎn)的坐標(biāo)一定滿(mǎn)足函數(shù)的解析式.求最值的問(wèn)題解決的基本思路是轉(zhuǎn)化為函數(shù)求最值的問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年江蘇省無(wú)錫市天一實(shí)驗(yàn)學(xué)校中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2008•南昌)如圖,拋物線(xiàn)y1=-ax2-ax+1經(jīng)過(guò)點(diǎn)P(-),且與拋物線(xiàn)y2=ax2-ax-1相交于A(yíng),B兩點(diǎn).
(1)求a值;
(2)設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),觀(guān)察M,N,E,F(xiàn)四點(diǎn)的坐標(biāo),寫(xiě)出一條正確的結(jié)論,并通過(guò)計(jì)算說(shuō)明;
(3)設(shè)A,B兩點(diǎn)的橫坐標(biāo)分別記為xA,xB,若在x軸上有一動(dòng)點(diǎn)Q(x,0),且xA≤x≤xB,過(guò)Q作一條垂直于x軸的直線(xiàn),與兩條拋物線(xiàn)分別交于C,D兩點(diǎn),試問(wèn)當(dāng)x為何值時(shí),線(xiàn)段CD有最大值,其最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年數(shù)學(xué)中考模擬試卷(15)(解析版) 題型:解答題

(2008•南昌)如圖,拋物線(xiàn)y1=-ax2-ax+1經(jīng)過(guò)點(diǎn)P(-,),且與拋物線(xiàn)y2=ax2-ax-1相交于A(yíng),B兩點(diǎn).
(1)求a值;
(2)設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),觀(guān)察M,N,E,F(xiàn)四點(diǎn)的坐標(biāo),寫(xiě)出一條正確的結(jié)論,并通過(guò)計(jì)算說(shuō)明;
(3)設(shè)A,B兩點(diǎn)的橫坐標(biāo)分別記為xA,xB,若在x軸上有一動(dòng)點(diǎn)Q(x,0),且xA≤x≤xB,過(guò)Q作一條垂直于x軸的直線(xiàn),與兩條拋物線(xiàn)分別交于C,D兩點(diǎn),試問(wèn)當(dāng)x為何值時(shí),線(xiàn)段CD有最大值,其最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年江蘇省南通市啟東市長(zhǎng)江中學(xué)初中畢業(yè)升學(xué)數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2008•南昌)如圖,拋物線(xiàn)y1=-ax2-ax+1經(jīng)過(guò)點(diǎn)P(-,),且與拋物線(xiàn)y2=ax2-ax-1相交于A(yíng),B兩點(diǎn).
(1)求a值;
(2)設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),觀(guān)察M,N,E,F(xiàn)四點(diǎn)的坐標(biāo),寫(xiě)出一條正確的結(jié)論,并通過(guò)計(jì)算說(shuō)明;
(3)設(shè)A,B兩點(diǎn)的橫坐標(biāo)分別記為xA,xB,若在x軸上有一動(dòng)點(diǎn)Q(x,0),且xA≤x≤xB,過(guò)Q作一條垂直于x軸的直線(xiàn),與兩條拋物線(xiàn)分別交于C,D兩點(diǎn),試問(wèn)當(dāng)x為何值時(shí),線(xiàn)段CD有最大值,其最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年福建省泉州市實(shí)驗(yàn)中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2008•南昌)如圖,拋物線(xiàn)y1=-ax2-ax+1經(jīng)過(guò)點(diǎn)P(-,),且與拋物線(xiàn)y2=ax2-ax-1相交于A(yíng),B兩點(diǎn).
(1)求a值;
(2)設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),觀(guān)察M,N,E,F(xiàn)四點(diǎn)的坐標(biāo),寫(xiě)出一條正確的結(jié)論,并通過(guò)計(jì)算說(shuō)明;
(3)設(shè)A,B兩點(diǎn)的橫坐標(biāo)分別記為xA,xB,若在x軸上有一動(dòng)點(diǎn)Q(x,0),且xA≤x≤xB,過(guò)Q作一條垂直于x軸的直線(xiàn),與兩條拋物線(xiàn)分別交于C,D兩點(diǎn),試問(wèn)當(dāng)x為何值時(shí),線(xiàn)段CD有最大值,其最大值為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案