在平面直角坐標系中,已知M1(3,2),N1(5,﹣1),線段M1N1平移至線段MN處(注:M1與M,N1與N分別為對應點).
(1)若M(﹣2,5),請直接寫出N點坐標.
(2)在(1)問的條件下,點N在拋物線上,求該拋物線對應的函數(shù)解析式.
(3)在(2)問條件下,若拋物線頂點為B,與y軸交于點A,點E為線段AB中點,點C(0,m)是y軸負半軸上一動點,線段EC與線段BO相交于F,且OC:OF=2:,求m的值.
(4)在(3)問條件下,動點P從B點出發(fā),沿x軸正方向勻速運動,點P運動到什么位置時(即BP長為多少),將△ABP沿邊PE折疊,△APE與△PBE重疊部分的面積恰好為此時的△ABP面積的,求此時BP的長度.
解:(1)(0,2)。
(2)∵N(0,2)在拋物線上,∴k=2。
∴拋物線的解析式為。
(3)∵,
∴B(,0)、A(0,2)、E(,1)。
∵CO:OF=2:,
∴CO=﹣m,F(xiàn)O=m,。
∵,∴。
整理得:m2+m=0!鄊=﹣1或0 。
∵m<0,∴m=﹣1。
(4)在Rt△ABO中,,
∴∠ABO=30°,AB=2AO=4
①當∠BPE>∠APE時,連接A1B,則對折后如圖2,A1為對折后A的所落點,△EHP是重疊部分。
∵E為AB中點,∴S△AEP=S△BEP=S△ABP。
∵S△EHP=S△ABP,∴ =S△EHP=S△BHP=S△ABP。
∴A1H=HP,EH=HB=1!嗨倪呅蜛1BPE為平行四邊形。
∴BP=A1E=AE=2。
②當∠BPE=∠APE時,重疊部分面積為△ABP面積的一半,不符合題意。
③當∠BPE<∠APE時.則對折后如圖3,A1為對折后A的所落點,△EHP是重疊部分。
∵E為AB中點,∴S△AEP=S△BEP=S△ABP。
∵S△EHP=S△ABP,∴S△EBH=S△EHP==S△ABP。
∴BH=HP,EH=HA1=1。
又∵BE=EA=2,∴EHAP!郃P=2。
在△APB中,∠ABP=30°,AB=4,AP=2,
∴∠APB=90°!郆P=。
綜上所述,BP=2或。
【解析】
試題分析:(1)首先根據(jù)點M的移動方向和單位得到點N的平移方向和單位,然后按照平移方向和單位進行移動即可:
由于圖形平移過程中,對應點的平移規(guī)律相同,
由點M到點M′可知,點的橫坐標減5,縱坐標加3,
故點N′的坐標為(5﹣5,﹣1+3),即(0,2)。
(2)將點N的坐標代入函數(shù)的解析式即可求得k值。
(3)配方后確定點B、A、E的坐標,根據(jù)CO:OF=2:,用m表示出線段CO、FO和BF的長,利用得到關于m的方程,求得m的值即可。
(4)分當∠BPE<∠APE時、當∠BPE=∠APE時、當∠BPE<∠APE時三種情況分類討論即可。
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
| ||
2 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com