【題目】綜合與實(shí)踐學(xué)習(xí)活動(dòng)準(zhǔn)備制作一組三角形,記這些三角形的三邊分別為,,用記號(hào) 表示一個(gè)滿足條件的三角形,如表示邊長(zhǎng)分別為24,4個(gè)單位長(zhǎng)度的一個(gè)三角形.

1)若這些三角形三邊的長(zhǎng)度為大于0且小于3的整數(shù)個(gè)單位長(zhǎng)度,請(qǐng)用記號(hào)寫出所有滿足條件的三角形;

2)如圖,的中線,線段,的長(zhǎng)度分別為2個(gè),6個(gè)單位長(zhǎng)度,且線段的長(zhǎng)度為整數(shù)個(gè)單位長(zhǎng)度,過(guò)點(diǎn)的延長(zhǎng)線于點(diǎn)

①求之長(zhǎng);

②請(qǐng)直接用記號(hào)表示

【答案】1)(1,1,1),(1,2,2),(222);(2)①ED3;②(2,66).

【解析】

1)由三角形的三邊關(guān)系即可得出結(jié)果;
2)①由平行線的性質(zhì)得出∠ABD=ECD,∠BAD=CED,證明△ABD≌△ECD,得出AD=ED,AB=CE=2,因此AE=2AD,在△ACE中,由三角形的三邊關(guān)系得出AC-CEAEAC+CE,得出2AD4,由題意即可得出結(jié)果;
AE=2AD=6CE=2,AC=6,用記號(hào)表示△ACE為(2,6,6).

1)由三角形的三邊關(guān)系得所有滿足條件的三角形為:

1,1,1),(1,22),(22,2);

2)①∵CEAB,

∴∠B=∠ECD,∠BAD=∠E,

AD△ABC的中線,

BDCD

△ABD△ECD

∴△ABD≌△ECDAAS

ADED,ABCE2,

AE2AD,

△ACE中,ACCEAEACCE,

622AD62,

2AD4,

∵線段AD的長(zhǎng)度為整數(shù)個(gè)單位長(zhǎng)度,

AD3

ED3

AE2AD6,用記號(hào)表示△ACE為(2,6,6).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)平行四邊形ABCD對(duì)角線交點(diǎn)O的直線交ADE,交BCF,若AB=5BC=6,OE=2,那么四邊形EFCD周長(zhǎng)是( 。

A. 16B. 15C. 14D. 13

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AD=2,AB=3,過(guò)點(diǎn)A,C作相距為2的平行線段AE,CF,分別交CD,AB于點(diǎn)E,F(xiàn),則DE的長(zhǎng)是( 。

A. B. C. 1 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,MPNQ分別垂直平分ABAC.

(1)若△APQ的周長(zhǎng)為12BC的長(zhǎng);

(2)BAC105°,求∠PAQ的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)問(wèn)題發(fā)現(xiàn)

如圖1,在Rt△ABC中,∠A=90°,=1,點(diǎn)P是邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),∠PAD=90°,∠APD=∠B,連接 CD.

(1)①求的值;②求∠ACD的度數(shù).

(2)拓展探究

如圖 2,在Rt△ABC中,∠A=90°,=k.點(diǎn)P是邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),∠PAD=90°,∠APD=∠B,連接CD,請(qǐng)判斷∠ACD與∠B 的數(shù)量關(guān)系以及PB與CD之間的數(shù)量關(guān)系,并說(shuō)明理由.

(3)解決問(wèn)題

如圖 3,在△ABC中,∠B=45°,AB=4,BC=12,P 是邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),∠PAD=∠BAC,∠APD=∠B,連接CD.若 PA=5,請(qǐng)直接寫出CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)有進(jìn)水管與出水管的容器,從某時(shí)刻開始分鐘內(nèi)只進(jìn)水不出水.在隨后的分鐘內(nèi)既進(jìn)水又出水,直到容器內(nèi)的水量達(dá)到.如圖,坐標(biāo)系中的折線段表示這一過(guò)程中容器內(nèi)的水量(單位:)與時(shí)間(單位:分)之間的關(guān)系.

1)單獨(dú)開進(jìn)水管,每分鐘可進(jìn)水________;

2)求進(jìn)水管與出水管同時(shí)打開時(shí)容器內(nèi)的水量與時(shí)間的函數(shù)關(guān)系式

3)當(dāng)容器內(nèi)的水量達(dá)到時(shí),立刻關(guān)閉進(jìn)水管,直至容器內(nèi)的水全部放完.請(qǐng)?jiān)谕蛔鴺?biāo)系中畫出表示放水過(guò)程中容器內(nèi)的水量與時(shí)間關(guān)系的線段,并直接寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,C,EO上的兩點(diǎn),若AC平分∠EAB,CDAE于點(diǎn)D

(1)求證:DC是⊙O切線;

(2)若AO=6,DC=3,求DE的長(zhǎng);

(3)過(guò)點(diǎn)CCFABF,如圖2,若ADOA=1.5,AC=3,求圖中陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,梯形ABCD中,ADBCAEBC于點(diǎn)E,ADC的平分線交AE于點(diǎn)O,以點(diǎn)O為圓心,OA為半徑的圓經(jīng)過(guò)點(diǎn)B,交BC于另一點(diǎn)F.

(1)求證:CD與⊙O相切;

(2)BF24,OE5,求tanABC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,菱形ABCD,AB=4,∠ADC=120o,連接對(duì)角線AC、BD交于點(diǎn)O,

(1)如圖2,將△AOD沿DB平移,使點(diǎn)D與點(diǎn)O重合,求平移后的△ABO與菱形ABCD重合部分的面積.

(2)如圖3,將△ABO繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)交AB于點(diǎn)E,交BC于點(diǎn)F,

①求證:BE′+BF=2,

②求出四邊形OEBF的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案