【題目】如圖,在平面直角坐標系中,平行四邊形ABCD的頂點AB的坐標分別為(-2,0),(,0),AD=2,∠DAB=60°P從點A出發(fā)沿ADC運動到點C,連接PO.當PO=OB時,點P的坐標為___.

【答案】-,)或(0,

【解析】

OFADF,作PEOAE,由直角三角形的性質得出,證出∠AOP=30°,得出PE=OP=,OE=PE=,得出;設CDy軸交于Q,連接OD,由等邊三角形的性質得出∠AOD=60°,由直角三角形的性質得出DQ=OD=1OQ=DQ=,得出Q0,);即可得出結果.

OFADF,作PEOAE,如圖所示:

則∠AOF=30°,

AF=OA=1

OF=AF=,

FP重合,

∴∠OPA=90°,

∴∠AOP=30°

PE=OP=,OE=PE=,

;

CDy軸交于Q,連接OD

∵∠BAD=60°,

∴△AOD是等邊三角形,

∴∠AOD=60°,

∴∠DOQ=30°OD=OA=2,

DQ=OD=1,

OQ=DQ=,

OQ=OB,

Q0,);

PO=OB時,點P的坐標為或(0,.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,數(shù)軸上兩點分別表示有理數(shù)25,我們用來表示兩點之間的距離.

(1)直接寫出的值=______

(2)若數(shù)軸上一點表示有理數(shù)m,則的值是______

(3)當代數(shù)式∣n +2+n 5∣的值取最小值時,寫出表示n的點所在的位置;

(4)若點分別以每秒2個單位長度和每秒3個單位長度的速度同時向數(shù)軸負方向運動,求經(jīng)過多少秒后,點到原點的距離是點到原點的距離的2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中央電視臺體育頻道用直升機航拍技術全程直播國際馬拉松比賽.如圖,在直升機的鏡頭下,觀測馬拉松景觀大道A處的俯角為30°,B處的俯角為45°.如果此時直升機鏡頭C處的高度CD100米,點A、D、B在同一直線上,則A、B兩點的距離是_____米.(保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水果商店經(jīng)銷一種蘋果,共有20筐,以每筐25千克為標準,超過或不足的千克數(shù)分別用正、負數(shù)來表示,記錄如表:

與標準質量的差值(單位;千克)

-3

-2

-1.5

0

1

2.5

筐數(shù)

1

4

2

3

2

8

1)這20筐蘋果中,最重的一筐比最輕的一筐多重多少千克?

2)與標準重量比較,這20筐蘋果總計超過或不足多少千克?

3)若蘋果每千克售價元,則出售這20筐蘋果可賣多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A、B兩組卡片共5張,A組的三張分別寫有數(shù)字2,4,6B組的兩張分別寫有3,5.它們除了數(shù)字外沒有任何區(qū)別,

1隨機從A組抽取一張,求抽到數(shù)字為2的概率;

2隨機地分別從A組、B組各抽取一張,請你用列表或畫樹狀圖的方法表示所有等可能的結果.現(xiàn)制定這樣一個游戲規(guī)則:若選出的兩數(shù)之積為3的倍數(shù),則甲獲勝;否則乙獲勝.請問這樣的游戲規(guī)則對甲乙雙方公平嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一些長30厘米,寬10厘米的長方形紙,按圖所示方法粘合起來,粘合部分的寬為2厘米.

(1)求5張白紙粘合后的總長度為多少厘米?

(2)設x張白紙粘合后的總長度為y厘米,請寫出y與x之間的關系式?

(3)求當x=20時,試求y的值為多少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市在十一長假期間對顧客實行優(yōu)惠,規(guī)定如下:

一次性購物金額

優(yōu)惠辦法

不超過100

不予優(yōu)惠

超過100元但不超過500

超過100元部分給予九折優(yōu)惠

超過500

超過500元部分給予八折優(yōu)惠

1)小明的爺爺一次性購200元的保健食品,他實際付款_____元;小明媽媽一次性購300元的衣服,她實際付款_____元;如果他們兩人合作付款,則能少付_____元;

2)小芳奶奶在該超市一次性購物x元生活用品,當x大于或等于500時,她實際付款_____元;(用含x的式子表示,寫最簡結果)

3)如果小芳奶奶兩次購物貨款合計900元,第一次購物的貨款為a元(),兩次購物小芳奶奶實際付款多少元?(用含a的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過A(3,0),B(0,3)兩點.

(1)求此拋物線的解析式和直線AB的解析式;

(2)如圖①,動點E從O點出發(fā),沿著OA方向以1個單位/秒的速度向終點A勻速運動,同時,動點F從A點出發(fā),沿著AB方向以個單位/秒的速度向終點B勻速運動,當E,F(xiàn)中任意一點到達終點時另一點也隨之停止運動,連接EF,設運動時間為t秒,當t為何值時,△AEF為直角三角形?

(3)如圖②,取一根橡皮筋,兩端點分別固定在A,B處,用鉛筆拉著這根橡皮筋使筆尖P在直線AB上方的拋物線上移動,動點P與A,B兩點構成無數(shù)個三角形,在這些三角形中是否存在一個面積最大的三角形?如果存在,求出最大面積,并指出此時點P的坐標;如果不存在,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對任意一個四位數(shù),如果千位與十位上的數(shù)字之和為9,百位與個位上的數(shù)字之和也為9,則稱極數(shù);如果一個正整數(shù)是另一個正整數(shù)的平方,則稱正整數(shù)是完全平方數(shù).若四位數(shù)極數(shù),記,若是完全平方數(shù),則______.

查看答案和解析>>

同步練習冊答案