解:(1)延長(zhǎng)GP交DC于H,
∵DC∥GF,
∴∠DHP=∠PGF,∠DPH=∠GPF,
∵DP=PF,
∴△DHP≌△PGF,
∴HD=GF,
∵四邊形ABCD和四邊形GFEB是菱形,
∴DC=CB,F(xiàn)G=GB,
∴DH=GB,
∴DC-DH=CB-GB,
∴CH=CG,
∴△CHG就是等腰三角形且CP是底邊上的中線,根據(jù)等腰三角形三線合一的特點(diǎn),
即可得出CP⊥PG;
∴線段PG與PC的位置關(guān)系是PG⊥PC;
(2)線段PG與PC的位置關(guān)系是PG⊥PC;
證明:如圖②,延長(zhǎng)GP到H,使PH=PG,
連接CH,CG,DH,
∵P是線段DF的中點(diǎn),
∴FP=DP,
∵∠GPF=∠HPD,
∴△GFP≌△HDP,
∴GF=HD,∠GFP=∠HDP,
∵
=
=
,
∴∠ADC=∠ABC=60°,∠GBF=60°,
∵四邊形ABCD是菱形,
∴CD=CB,∠ADC=∠ABC=60°,點(diǎn)A、B、F又在一條直線上,
∴∠FBC=120°,
∴∠HDC=∠CBG=60°,
∵四邊形BEFG是菱形,
∴GF=GB,
∴HD=GB,
即在△HDC與△GBC中,
,
∴△HDC≌△GBC(SAS),
∴CH=CG,∠DCH=∠BCG,
∴∠DCH+∠HCB=∠BCG+∠HCB=120°,
即∠HCG=120°
∵CH=CG,PH=PG,
∴PG⊥PC.
(3)將圖①中的菱形BEFG饒點(diǎn)B順時(shí)針旋轉(zhuǎn)任意角度,
(1)中的結(jié)論沒有變化,PG⊥PC.
分析:(1)可通過構(gòu)建全等三角形求解.延長(zhǎng)GP交DC于H,可證△DHP和△PGF全等,已知的有DC∥GF,根據(jù)平行線間的內(nèi)錯(cuò)角相等可得出兩三角形中兩組對(duì)應(yīng)的角相等,又有DP=PF,因此構(gòu)成了全等三角形判定條件中的(AAS),得出兩三角形全等,于是△CHG就是等腰直角三角形且CP是底邊上的中線,根據(jù)等腰三角形三線合一的特點(diǎn),即可得出CP⊥PG;
(2)方法同(1),只不過△CHG是個(gè)等腰三角形,得出頂角為120°,可根據(jù)三角函數(shù)來得出PG、CP的比例關(guān)系;
(3)經(jīng)過(1)(2)的解題過程,我們要構(gòu)建出以CP為底邊中線的等腰三角形,那么可延長(zhǎng)GP到H,使PH=PG,連接CH、DH,那么根據(jù)前兩問的解題過程,我們要求的是三角形CHG是個(gè)等腰三角形,關(guān)鍵是證△GFP≌△HDP,根據(jù)已知得出△HDC≌△GBC,然后得出即可.
點(diǎn)評(píng):此題主要考查了正方形,菱形的性質(zhì),以及全等三角形的判定等知識(shí)點(diǎn),根據(jù)已知和所求的條件正確的構(gòu)建出相關(guān)的全等三角形是解題的關(guān)鍵.