【題目】如圖(1)AC⊥AB,BD⊥AB,AB=12cm,AC=BD=8cm,點P在線段AB上以2cm/s的速度由點A向點B運動,同時,點Q在線段BD上由點B向點D運動,它們運動的時間為t(s).
(1)若點Q的運動速度與點P的運動速度相等,當(dāng)t=2時,△ACP與△BPQ是否全等,請說明理由;
(2)在(1)的條件下,判斷此時線段PC和線段PQ的位置關(guān)系,并證明;
(3)如圖(2),將圖(1)中的“AC⊥AB,BD⊥AB”改為“∠CAB=∠DBA=50°”,其他條件不變.設(shè)點Q的運動速度為xcm/s,是否存在實數(shù)x,使得△ACP與△BPQ全等?若存在,求出相應(yīng)的x、t的值;若不存在,請說明理由.
【答案】(1)△ACP與△BPQ全等,理由詳見解析;(2)PC⊥PQ,證明詳見解析;(3)當(dāng)t=2s,x=2cm/s或t=3s,x=cm/s時,△ACP與△BPQ全等.
【解析】
(1)利用SAS定理證明△ACP≌△BPQ;
(2)根據(jù)全等三角形的性質(zhì)判斷線段PC和線段PQ的位置關(guān)系;
(3)分△ACP≌△BPQ,△ACP≌△BQP兩種情況,根據(jù)全等三角形的性質(zhì)列式計算.
(1)△ACP與△BPQ全等,
理由如下:當(dāng)t=2時,AP=BQ=4cm,
則BP=12﹣4=8cm,
∴BP=AC=8cm,
又∵∠A=∠B=90°,
在△ACP和△BPQ中,
,
∴△ACP≌△BPQ(SAS).
(2)PC⊥PQ,
證明:∵△ACP≌△BPQ,
∴∠ACP=∠BPQ,
∴∠APC+∠BPQ=∠APC+∠ACP=90°.
∴∠CPQ=90°,
即線段PC與線段PQ垂直.
(3)①若△ACP≌△BPQ,
則AC=BP,AP=BQ,
∴12﹣2t=8,
解得,t=2(s),
則x=2(cm/s).
②若△ACP≌△BQP,
則AC=BQ,AP=BP,
則2t=×12,
解得,t=3(s),則x=8÷3=(cm/s),
故當(dāng)t=2s,x=2cm/s或t=3s,x=cm/s時,△ACP與△BPQ全等.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線經(jīng)過A(2,0). 設(shè)頂點為點P,與x軸的另一交點為點B.
(1)求b的值,求出點P、點B的坐標(biāo);
(2)如圖,在直線 上是否存在點D,使四邊形OPBD為平行四邊形?若存在,求出點D的坐
標(biāo);若不存在,請說明理由;
(3)在x軸下方的拋物線上是否存在點M,使△AMP≌△AMB?如果存在,試舉例驗證你的猜想;如果不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課本中有一道作業(yè)題:有一塊三角形余料ABC,它的邊BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個頂點分別在AB,AC上.
(1)加工成的正方形零件的邊長是多少mm?
(2)如果原題中要加工的零件是一個矩形,且此矩形是由兩個并排放置的正方形所組成,如圖1,此時,這個矩形零件的兩條邊長又分別為多少?請你計算.
(3)如果原題中所要加工的零件只是一個矩形,如圖2,這樣,此矩形零件的兩條邊長就不能確定,但這個矩形面積有最大值,求達(dá)到這個最大值時矩形零件的兩條邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠ACB=∠DBC,添加以下條件,不能判定△ABC≌△DCB的是( )
A.∠ABC=∠DCBB.∠ABD=∠DCA
C.AC=DBD.AB=DC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若拋物線與軸兩個交點間的距離為2,稱此拋物線為定弦拋物線,已知某定弦拋物線的對稱軸為直線,將此拋物線向左平移2個單位,再向下平移3個單位,得到的拋物線過點( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在以點O為圓心的兩個同心圓中,大圓的弦AB交小圓于點C,D(如圖).
(1)求證:AC=BD;
(2)若大圓的半徑R=10,小圓的半徑r=8,且圓O到直線AB的距離為6,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=3,AD=2,點E是射線DA上一點,連接EB,以點E為圓心EB長為半徑畫弧,交射線CB于點F,作射線FE與CD延長線交于點G.
(1)如圖1,若DE=5,則∠DEG=______°;
(2)若∠BEF=60°,請在圖2中補全圖形,并求EG的長;
(3)若以E,F,B,D為頂點的四邊形是平行四邊形,此時EG的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,長方形OABC的邊OA、OC分別在x軸、y軸上,B點坐標(biāo)是(8,4),將△AOC沿對角線AC翻折得△ADC,AD與BC相交于點E.
(1)求證:△CDE≌△ABE
(2)求E點坐標(biāo);
(3)如圖2,動點P從點A出發(fā),沿著折線A→B→C→O運動(到點O停止),是否存在點P,使得△POA的面積等于△ACE的面積,若存在,直接寫出點P坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016湖北省荊門市)如圖,已知點A(1,2)是反比例函數(shù)圖象上的一點,連接AO并延長交雙曲線的另一分支于點B,點P是x軸上一動點;若△PAB是等腰三角形,則點P的坐標(biāo)是______________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com